Tau-induced memory loss in Alzheimer's mice is reversible

February 16, 2011
To test their capacity to learn, the mice are trained to find an underwater platform which is not visible to them from the edge of a water basin. The swimming path is marked in red. Normal mice learn to find the path after just a few training sessions; they remember it and swim straight to the platform (left) when tested. A mouse with too much aggregated tau protein in its neurons finds it difficult to learn and swims aimlessly around the basin (centre) for extended periods. If the gene for the toxic tau protein in this mouse is switched off for a few weeks using a genetic trick, the mouse is able to learn normally again and quickly finds its way to the platform (right). Credit: Max-Planck-ASMB/Mandelkow

Amyloid-beta and tau protein deposits in the brain are characteristic features of Alzheimer disease. The effect on the hippocampus, the area of the brain that plays a central role in learning and memory, is particularly severe. However, it appears that the toxic effect of tau protein is largely eliminated when the corresponding tau gene is switched off.

Researchers from the Max Planck Research Unit for Structural at DESY in Hamburg have succeeded in demonstrating that once the gene is deactivated, mice with a human tau gene, which previously presented symptoms of , regain their ability to learn and remember, and that the of the mice also reappear in part. The scientists are now testing active substances to prevent the formation of tau deposits in mice. This may help to reverse in the early stages of Alzheimer disease – in part, at least.

Whereas aggregated amyloid-beta protein forms insoluble clumps between the neurons, the accumulates inside them. Tau protein stabilises the tube-shaped fibers of the cytoskeleton, known as microtubules, which provide the “rails” for cellular transport. In Alzheimer disease, excess phosphate groups cause the tau protein to malfunction and form clumps (the ‘neurofibrillary tangles’). As a result, nutrient transport breaks down and the neurons and their synapses die off. This process is accompanied by the initial stage of memory loss.

Together with colleagues from Leuven, Hamburg and Erlangen, Eva and Eckhard Mandelkow’s team from the Max Planck Research Unit for Structural Molecular Biology generated regulatable transgenic mice with two different human tau gene variants that can be switched on and off again: one group was given a form of the protein that cannot become entangled (anti-aggregant), and a second was provided with the code for the strongly aggregating protein variant (pro-aggregant). The mice with the first form developed no Alzheimer symptoms; the rodents that were given the pro-aggregant tau developed the disease.

The video will load shortly.
To test their capacity to learn, the mice are trained to find an underwater platform which is not visible to them from the edge of a water basin. The swimming path is marked in red. If the gene for the toxic tau protein in this mouse is switched off for a few weeks using a genetic trick, the mouse is able to learn normally again and quickly finds its way to the platform. Credit: Max-Planck-ASMB/Mandelkow

The scientists measured the mice’s memory loss with the help of a swimming test: the healthy mice quickly learn how to find a life-saving platform located under the surface of the water in a water basin. In contrast, the transgenic animals, which have the additional pro-aggregant tau gene paddle aimlessly around the basin until they accidentally stumble on the platform; they require over four times more time to do this than their healthy counterparts. However, if the mutated toxic tau gene is switched off again, the mice learn to reach “dry land” with ease just a few weeks later. As a control, the mice with the anti-aggregant form of tau have no defects in learning, just as normal non-transgenic mice.

Surprising tissue results

Tissue tests showed that, as expected, no tau clumps had formed in the brains of the first group of mice expressing anti-aggregant tau. In the second group – the mice suffering from Alzheimer’s – co-aggregates from human tau and “mouse tau” were formed - against expectations, because tau protein from mice does not usually aggregate. “Even more astonishingly, weeks after the additional gene had been switched off, the aggregated human tau had dissolved again. However, the ‘mouse tau’ remained clumped. Despite this, the mice were able to learn and remember again,” says Eckhard Mandelkow. More precise tests revealed that new synapses had actually formed in their brains.

The scientists concluded from this that mutated or pathological tau can alter healthy tau. It appears that pro-aggregant tau can act similar to a crystal nucleus – once it has started to clump up, it drags neighboring "healthy" tau into the clumps as well. This is what makes the process so toxic to the neurons. “The really important discovery here, however, is that the progression of Alzheimer’s disease can be reversed in principle - at least at an early stage of the illness before too many neurons have been destroyed,” explains Eva Mandelkow who, together with her husband, will be awarded the Potamkin Prize 2011 for Alzheimer's disease research, which is sponsored by the American Academy of Neurology.

The aggregation of tau proteins, however, cannot simply be switched off in humans the way it can in the transgenic . Nevertheless, special substances exist that could dissolve the tau aggregates. By screening 200,000 substances, the Hamburg researchers have already identified several classes of active substances that could re-convert the tau aggregates into soluble tau. These are now being tested on animals.

More information: Astrid Sydow, et al. Tau-induced Defects in Synaptic Plasticity, Learning and Memory are reversible in Transgenic Mice after Switching off the Toxic Tau Mutant, Journal of Neuroscience, February 16, 2011

Related Stories

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.