Boosting protein garbage disposal in brain cells protects mice from Alzheimer's disease

March 4, 2011, Georgetown University Medical Center

Gene therapy that boosts the ability of brain cells to gobble up toxic proteins prevents development of Alzheimer's disease in mice that are predestined to develop it, report researchers at Georgetown University Medical Center. They say the treatment – which is given just once - could potentially do the same in people at the beginning stages of the disease.

The study, published online in Human Molecular Genetics, demonstrates that giving brain cells extra parkin genes promotes efficient and effective removal of amyloid particles believed to be destroying the neurons from the inside. This revved up protein disposal process prevents the cells from dying and spewing amyloid proteins into the brain, where they stick together and clump into plaque, they say.

"At its core, this is a simple garbage in-garbage out therapy, and we are the first to show that this gene attacks amyloid beta inside brain cells for degradation," says the study's lead investigator, neuroscientist Charbel E-H Moussa, M.B., Ph.D.

He adds that the strategy may work for other brain disorders. "Many neurodegenerative diseases are characterized by a toxic build-up of one protein or another, and this approach is designed to prevent that process early-on," he says.

The novelty of Moussa's work is that he believes diseases like Alzheimer's starts when neurons are unable to get rid of toxic amyloid beta that begins to build up inside neurons – an idea that he says remains controversial, but is rapidly gaining acceptance among neuroscientists.

Moussa has documented a connection between Alzheimer's, Parkinsonism (such as Dementia with Lewy Bodies, or DLB), and Down's syndrome, finding that what these disorders have in common is a build-up of amyloid beta. In Parkinsonism, or secondary Parkinson's disease, the may be found in Lewy bodies, which are clumps of protein that clogs the brain of people with DLB, and in some people with Parkinson's disease. People with Down's syndrome produce too much amyloid protein because they have three copies of the chromosome (21) that generates amyloid. "They have dementia because they have too much amyloid in their brains," Moussa says.

He and his colleagues developed a unique model system that mimics the early stages of these diseases. They used a lentivirus, a modified, inert form of HIV, to deliver amyloid beta into the motor cortex of rats, and showed that this produced a buildup of amyloid beta inside neurons, but not an accumulation outside of the cells. They hypothesize that once the stockpile of amyloid beta inside the cell reaches a critical level, neurons burst, and the amyloid beta proteins begin to stick together in the space between brain cells, forming plaque.

Additionally, tau pathology is triggered by amyloid beta inside neurons, causing tau malfunctions, and the whole process results in increased brain inflammation.

So what Moussa and his team tested was removal of the amyloid beta buildup inside neurons. In earlier studies, they used the same model gene delivery system to express extra parkin in the brain of rats at the same time they received amyloid beta. Parkin is part of the ubiquitin ligase complex of proteins that helps target other proteins for degradation inside of the cell, and mutations in parkin are known to cause an early onset familial form of Parkinson's disease. In the earlier studies, the researchers found that in rats that had received amyloid beta, parkin effectively cleared the protein away.

In this study, they used triple transgenic mice that are often used as a model of human . They develop intracellular amyloid beta at six months of age and extracellular amyloid beta plaque about 3-6 months later.

The researchers injected parkin in one side of the brain of young mice, and left the other side untouched, as a control to compare effects of the treatment.

They found that providing with about 50 percent more parkin protein activates two parallel garbage-removal processes within the brain. One is ubiquitination, in which errant proteins are targeted for destruction and recycling within the cell. The other process is autophagy, in which membranes form around damaged mitochondria (the cell's power plants) and these membranes fuse with lysosomes that destroys the contents. This is particularly important, Moussa says, because damaged mitochondria have been found to clog the insides of neurons affected by Alzheimer's disease, and the extra parkin seems to help clear them. That allows the cells to produce new and healthy mitochondria.

"With a normal amount of parkin, the cells are overwhelmed and cannot remove molecular debris. Extra parkin cleans everything," Moussa says.

In a second experiment, the research team found that mice given parkin genes through the lentiviral vector had 75 percent less amyloid beta plaque in their brains, compared to mice that were not treated, and that neuronal cell death was also reduced by that amount. They also showed that parkin cleared away so much amyloid beta inside cells that the function of normal glutamate neurotransmission in the hippocampus was restored. This is especially important, the authors say, because glutamate is key to memory formation, retention and retrieval. "Hypothetically, these damaged cells could restart memory formation," Moussa says.

Moussa says the research team has done all the animal work necessary for an application to begin studying the treatment in humans, starting with an analysis of safety.

He adds that if these experiments are successful, the goal will be to use the treatment as early as possible in the course of a neurodegenerative disease. "Our hope is to stop the whole process early on, but if it is later, perhaps we can halt progression," he says.

Related Stories

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 04, 2011
So why not give it before there are signs of degeneration? That is, in old healthy adults.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.