Beat it: how the brain perceives rhythm

March 10, 2011, Wellcome Trust
Beat it: how the brain perceives rhythm
A toddler playing on a toy drum. Credit: Anthea Sieveking, Wellcome Images.

(PhysOrg.com) -- The brain uses distinct timing mechanisms to measure the duration between the intervals in a sequence of sounds, according to a study funded by the Wellcome Trust.Researchers from the Wellcome Trust Centre for Neuroimaging, UCL (University College London) and Newcastle University have found that distinct parts of the brain are involved in the these timing mechanisms.

Human behaviour such as speech and movement requires precise coordination and timing. In a study published online today in the Journal of Neuroscience, the researchers - Sundeep Teki, Dr Manon Grube, Dr Sukhbinder Kumar and Professor Timothy Griffiths, a Wellcome Trust Senior Research Fellow - presented sequences of click sounds to 18 volunteers in a scanner.

The participants were required to judge whether the duration of the last interval was shorter or longer than the penultimate interval. By varying the regularity of the preceding intervals (from very irregular to regular), the researchers were able to show that the brain recruits different mechanisms and areas for the timing of regular and irregular sequences of sounds.

The researchers found that a network comprising the basal ganglia was activated for the timing of regular sounds, whereas a network in the cerebellum was found to be activated for the timing of irregular sound sequences.

"The basal ganglia and are primarily motor structures and are known to be involved in time perception, but we have shown for the first time that their role in time perception varies according to the rhythmic context of time intervals," explains Sundeep, a doctoral candidate at UCL.

"We found that the cerebellar network measures the absolute duration of individual time intervals, like a stopwatch, while the basal ganglia network is involved in the measurement of time relative to a regular beat or rhythm in the sounds - for instance, timing relative to a metronome."

Professor Griffiths adds: "Patients with movement disorders such as Parkinson's disease due to impairment of the network or ataxias due to cerebellar pathology show cognitive deficits in time perception. These results suggest that their timing deficits can be distinguished on the basis of rhythm."

More information: Teki S et al. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 9 March 2011

Related Stories

Recommended for you

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PaulieMac
4.5 / 5 (2) Mar 10, 2011
I have always been curious about the evolutionary advantages of human abilities as regards rhythm in general, and music in particular... I wonder what survival/reproductive advantage there is in being able to time regularities in sound? Well, aside from the ability to attract groupies, of course ;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.