New transcription factor reveals molecular mechanism for wound-induced organ regeneration

March 11, 2011, RIKEN
Fig. 1: WIND1 gene expression induced at wound site. Credit: RIKEN

Japanese researchers at the RIKEN Plant Science Center (PSC) and the National Institute of Advanced Industrial Science and Technology (AIST) have identified a novel transcription factor controlling how plants dedifferentiate cells in response to wounding.

The finding sheds first-ever light on the molecular-level mechanisms of plant cell dedifferentiation, offering fundamental insights on wound-induced organ regeneration and promising applications in agriculture and manufacturing.

One of the most remarkable properties of plants is their capacity to regenerate tissue structures and even whole organs to replace those damaged or lost through injury. Plants are able to do this thanks to high-level dedifferentiation, a process whereby withdraw from their specialized state and acquire proliferation ability and , enabling them to develop anew into different cell types. While the knowledge and use of techniques for plant organ regeneration has a long history in horticulture, little is known about the underlying dedifferentiation.

Fig. 2: Overexpression of WIND1 gene is sufficient for cell dedifferentiation. Credit: RIKEN

To clarify these mechanisms, the researchers studied a common type of cell dedifferentiation induced by wounding, where its role in tissue and organ regeneration is critical to survival. In plants, this regeneration frequently occurs through the creation of masses of cells known as callus, which grow over the wound to protect it. Using data from earlier research, the researchers identified a gene in the model that is upregulated in callus. Further investigation revealed that the gene is rapidly expressed at the wound site and throughout the development of the callus, pointing to a potential role in wound-induced dedifferentiation.

Through a series of experiments, the researchers went on to analyze the function of this gene and the transcription factor it encodes, referred to as WOUND INDUCED DEDIFFERENTIATION 1 (WIND1). Elevated expression of the WIND1 gene in wounds, and formation of callus in response to WIND1 activation, reveal its role as a master regulator for wound-induced dedifferentiation in plants.

Fig. 3: WIND1 can be used as a molecular switch for plant dedifferentiation / redifferentiation. Credit: RIKEN

Together, the findings establish a mechanism for transcriptional control of cell dedifferentiation underlying wound-induced . While laying the groundwork for fundamental advances in plant science, the research also opens the door to applications in agricultural technology as well as in the production of useful materials.

More information: Iwase et al., The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis, Current Biology (2011), doi:10.1016/j.cub.2011.02.020

Related Stories

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.