Scientists identify gene that could hold the key to muscle repair

April 18, 2011

(PhysOrg.com) -- Researchers have long questioned why patients with Duchenne muscular dystrophy (DMD) tend to manage well through childhood and adolescence, yet succumb to their disease in early adulthood, or why elderly people who lose muscle strength following bed rest find it difficult or impossible to regain. Now, researchers at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health, are beginning to find answers in a specialized population of cells called satellite cells. Their findings, reported in the journal Genes & Development, suggest a potential therapeutic target for conditions where muscle deterioration threatens life or quality of life.

Key to the development of skeletal of the embryo and fetus, satellite cells continue to actively increase muscle mass through infancy. After that, they decrease in number and become quiescent, or inactive, until they are activated by injury or degeneration to proliferate. The process, which enables the body to repair damaged muscle, works quite well — to a point, says Vittorio Sartorelli, M.D., senior investigator in the NIAMS Laboratory of Muscle Stem Cells and Gene Regulation and lead author of the study.

For example, when a young person experiences muscle loss after a period of inactivity, muscle rebuilds as soon as activity is resumed. However, in the elderly, muscles lose that capacity. Similarly, in patients with DMD, the initial phases of muscle degeneration are effectively counteracted by the ability of satellite cells to regenerate.

"That is why people can survive until they are 20 years old without much of a problem, but, at a certain point, satellite cells stop proliferating," said Dr. Sartorelli. "That is the point at which the patient will start developing weakness and problems that will ultimately lead to death."

Suspecting a genetic switch that might turn off satellite cell proliferation in these circumstances, the scientists looked to a gene called Ezh2, known to keep the activity of other in check. When they genetically inactivated Ezh2 in satellite cells of laboratory mice, the mice failed to repair muscle damage caused by traumatic injury — satellite cells could not proliferate.

Ezh2 expression is known to decline during aging, and the new research in mice suggests that therapies to activate Ezh2 and promote satellite cell proliferation might eventually play a role in treating degenerative muscle diseases.

"We will not be able to cure the muscular dystrophies with this approach because the mutation in the gene that causes the diseases would remain. But certainly, if we can extend the period in which the satellite cells proliferate and compensate for the underlying defect, we might increase the lifespan of people with . We could certainly increase their quality of life," said Dr. Sartorelli.

Likewise, in the elderly, tweaking the gene in satellite cells would not increase their lifespan, but could increase their quality of life by helping to prevent falls and enabling them to move and walk better and go about their daily activities.

Dr. Sartorelli cautions that while the identification of Ezh2's role is a crucial step, any therapies are still many years away.

Related Stories

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.