Students mimic blood flow in the lab

May 25, 2011 By Marcia Goodrich
A fibrin-coated wire in a well plate, covered with pink cell culture medium.

If by chance you should have a stent inserted in a clogged coronary artery, you can probably count on it staying around for a very long time. So it’s important to know what will happen to it.

“But there’s not a lot of information on exactly how degrade in the body,” said Patrick Bowen, who just completed his BS in Materials Science and Engineering at Michigan Technological University. What information there is, on stents and other devices that surgeons place inside us for our own good, has been derived from studies on large animals, which are expensive and time-consuming.

That information may now be more forthcoming. Bowen is part of an interdisciplinary Senior Design team that found a couple of new ways to replicate what happens to stents and other manmade things tucked inside our blood vessels.

First, the group implanted tiny wires in the aortas of rats and tracked what happened to the material. Over time, the wires became coated with a layer of calcium and phosphorus and then were gradually covered by a layer of cell tissue.

The students then concocted a mixture of fibrin (a protein involved in blood clotting) and a cell culture medium chemically similar to blood. Next they put iron and magnesium wires in the mix. “Then they subjected it to circulatory flow,” said Jeremy Goldman, an associate professor of biomedical engineering and the team’s co-advisor. “Essentially, we tried to place the candidate stent material into a simulated artery.”

The wires in the fibrin mixture corroded in exactly the same way as the wires in the rats. “In the past, in vivo and in vitro corrosion rates have always been different,” said Jaroslaw Drelich, an associate professor of materials science and engineering and the group’s other co-advisor. “These appear to be identical.”

If their slurry is as good a mimic as these initial tests suggest, the team’s work has major implications for scientists.

“The rat model could help reduce reliance on large animals. And the students’ in vitro model might make it possible to reduce the use of animals overall,” Goldman said.

In other words, said Bowen, “We could save a lot of pigs and rabbits, and companies could save a lot of money.”

The Senior Design team has been funded by Boston Scientific, a designer and manufacturer of implantable medical devices, including stents. In particular, they are investigating bioabsorbable stents, which would be gradually absorbed into the body over time. So far, the company has been impressed with the students’ efforts, said Goldman. “They’ve done cutting-edge work. For undergraduates to accomplish this shows a high level of effort and dedication.”

Their success has been due in great part to its interdisciplinary nature, Goldman added. “The project brought together our two departments in a very nice way,” he said.

Senior Design team members, in addition to Bowen, are Rebecca Franke, Judy Bryne, Ellen Pokorney, Jessica Rhadigan and Aaron Tauscher (Biomedical Engineering); and Jesse Gelbaugh ( and Engineering). The researchers expect to publish a number of papers on the project; two recent graduates, Daniel Pierson and Jacob Edick, are first and second author, respectively on a paper that has been submitted for publication in the Journal of Biomedical Materials Research B: Applied Biomaterials.

Related Stories

Recommended for you

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.