Weill Institute researchers uncover basic cell pathway

May 24, 2011 By Krishna Ramanujan

Although all cells in an organism have the same DNA, cells function differently based on the genes they express. While most studies of gene expression focus on activities in the cell's nucleus, a new Cornell study finds that processes outside the nucleus -- along the cell membrane -- also play important roles in gene expression.

The study, published in the May 1 issue of , uses , a simple with 6,000 genes, most of which are found in other organisms, including humans, making them excellent candidates for studying complex biological pathways. This paper focuses on pathways related to the Gal1 gene, which is highly researched for characterizing as a model to understand how gene expression is induced and repressed.

The Cornell researchers identified two proteins, Tup1 and Cti6, which form a complex that regulates transcription of the Gal1 gene, but only through interactions with a lipid found on the cell membrane. Tup1 is highly conserved, meaning it has been unchanged through evolution and is found in many organisms from yeast to humans.

"People just focus on the chromosomes inside the nucleus [when studying gene expression]," said lead author Bong-Kwan Han, a research associate at Cornell's Weill Institute for Cell and Molecular Biology, who co-authored the paper with Scott Emr, director of the Weill Institute. "We show that we also have to look at the cytoplasm," Han added.

The researchers propose that Cti6 and a complex of the proteins Cyc8 and Tup1 shuttle out of the cell's nucleus to the , where they bind to a lipid called PI(3,5)P2 and then further assemble into a Cti6-Cyc8-Tup1 complex. This complex then shuttles back into the nucleus where it binds to other protein structures and plays central roles in activating and repressing transcription, and activating a repressed GAL1 gene.

"Our findings may provide important insights to understand how human Tup1 proteins regulate in our body," said Han. A few years ago, other researchers reported that the Charcot-Marie-Tooth disorder, a neurodegenerative human disease, may be related to a gene that regulates levels of the PI(3,5)P2 lipid. Also, since human Tup1 proteins are known to play an important role in nerve development, the researchers wonder whether the relationship between the PI(3,5)P2 lipid and Tup1 discovered in this study may be a factor in the underlying mechanism in the Charcot-Marie-Tooth disorder.

Future studies may explore whether such lipids modulate transcriptional regulators in other contexts and whether there are more examples of such lipid-mediated signaling mechanisms that shuttle between the cytoplasm to regulate the nucleus function of transcriptional factors.

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.