Weill Institute researchers uncover basic cell pathway

May 24, 2011 By Krishna Ramanujan, Cornell University

Although all cells in an organism have the same DNA, cells function differently based on the genes they express. While most studies of gene expression focus on activities in the cell's nucleus, a new Cornell study finds that processes outside the nucleus -- along the cell membrane -- also play important roles in gene expression.

The study, published in the May 1 issue of , uses , a simple with 6,000 genes, most of which are found in other organisms, including humans, making them excellent candidates for studying complex biological pathways. This paper focuses on pathways related to the Gal1 gene, which is highly researched for characterizing as a model to understand how gene expression is induced and repressed.

The Cornell researchers identified two proteins, Tup1 and Cti6, which form a complex that regulates transcription of the Gal1 gene, but only through interactions with a lipid found on the cell membrane. Tup1 is highly conserved, meaning it has been unchanged through evolution and is found in many organisms from yeast to humans.

"People just focus on the chromosomes inside the nucleus [when studying gene expression]," said lead author Bong-Kwan Han, a research associate at Cornell's Weill Institute for Cell and Molecular Biology, who co-authored the paper with Scott Emr, director of the Weill Institute. "We show that we also have to look at the cytoplasm," Han added.

The researchers propose that Cti6 and a complex of the proteins Cyc8 and Tup1 shuttle out of the cell's nucleus to the , where they bind to a lipid called PI(3,5)P2 and then further assemble into a Cti6-Cyc8-Tup1 complex. This complex then shuttles back into the nucleus where it binds to other protein structures and plays central roles in activating and repressing transcription, and activating a repressed GAL1 gene.

"Our findings may provide important insights to understand how human Tup1 proteins regulate in our body," said Han. A few years ago, other researchers reported that the Charcot-Marie-Tooth disorder, a neurodegenerative human disease, may be related to a gene that regulates levels of the PI(3,5)P2 lipid. Also, since human Tup1 proteins are known to play an important role in nerve development, the researchers wonder whether the relationship between the PI(3,5)P2 lipid and Tup1 discovered in this study may be a factor in the underlying mechanism in the Charcot-Marie-Tooth disorder.

Future studies may explore whether such lipids modulate transcriptional regulators in other contexts and whether there are more examples of such lipid-mediated signaling mechanisms that shuttle between the cytoplasm to regulate the nucleus function of transcriptional factors.

Related Stories

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.