Researchers solve membrane protein mystery

June 8, 2011, University of Wisconsin-Madison

A University of Wisconsin-Madison research team has solved a 25-year mystery that may lead to better treatments for people with learning deficits and mental retardation.

Synaptophysin is the first protein and most abundant ever found on the membranes surrounding the tiny sacs that carry to , the gaps where communication between occurs. But even though the loss of synaptophysin has recently been linked to learning deficits and , scientists have been unable for more than a quarter-century to explain what it actually does.

Now UW-Madison researchers have shown that synaptophysin controls the replacement of the constantly needed sacs, also known as vesicles. The study, appearing in the current issue of the journal Neuron, may lead to future drugs that could restore normalcy when vesicles are not utilized efficiently.

"Vesicles are at the heart of fusion, the fundamental process by which information is exchanged between and inside all cells in the body," says Edwin Chapman, a Howard Hughes Medical Institute professor at the UW-Madison School of Medicine and Public Health.

In the nervous system Chapman's team studied, the process begins when an impulse triggers exocytosis — that is, when a vesicle releases neurotransmitter at the synapse. Then a receiving neuron on the other side of the synapse binds to the neurotransmitter and activates a signal. To wrap up the first phase, the spent vesicle is incorporated into the donor cell membrane.

In the recovery phase of the process, called endocytosis, a new vesicle is pinched off from the donor cell surface and reloaded with neurotransmitter.

"This is a tightly coupled recycling process involving trillions of vesicles throughout the brain," says Chapman, based in the Department of Neuroscience. "As vesicles are consumed, if they are not immediately replaced, then you have a synapse that is not active anymore, and this is a problem."

The synaptophysin mystery had stayed in the back of Chapman's mind since he had been a graduate student in the late 1980s. When his current graduate student Sung E. Kwon said he wanted to apply some of the newest techniques to analyzing the problem, Chapman encouraged him to do it, despite the fact that other scientists had failed for years to find what synaptophysin does.

Using a mouse that had been genetically engineered to have no synaptophysin, Kwon attached a fluorescent tag to a vesicle protein so he could study the exocytosis-endocytosis cycle optically. He also used electrophysiological methods to analyze signaling in normal versus synaptophysin-free vesicles.

The experiments showed that the lack of synaptophysin had no effect on exocytosis, but produced a clear-cut deficit in the recycling of vesicles during endocytosis. Kwon was able to confirm the effect when he inserted synaptophysin and regained normal endocytosis.

"We found that synaptophysin regulates two distinct phases of endocytosis in synaptic vesicles, both during and after sustained neuronal activity," Kwon says. "Lack of synaptophysin delayed the replenishment of usable vesicles."

The defect may help explain why people with synaptophysin mutations may have mental retardation, he says.

"It will take more studies to directly link how this cycling defect leads to mental retardation, but we now have a good starting point," Kwon says.

Scientists could also now begin to screen for molecules that could override the defect and restore normal rates of endocytosis, adds Chapman.

"You can't do anything like that until you know what the protein does," he says. "And now we do."

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.