Prostate cancer gets around hormone therapy by activating a survival cell signaling pathway

June 14, 2011

Cancer is crafty. When one avenue driving its growth is blocked by drugs targeting that path, the malignancy often creates a detour, finding an alternative route to get around the roadblock.

In a study at UCLA's Jonsson Comprehensive Center, researchers found that when a common type of was treated with conventional hormone therapy blocking androgen production or androgen receptor (AR) function– which drives growth of the tumor – the cancer was able to adapt and compensate by activating a survival cell signaling , effectively circumventing the roadblock put up by this treatment.

The findings could have important clinical implications as this type of prostate cancer, in which the PTEN tumor suppressor gene is inactivated, accounts for about 40 to 50 percent of primary prostate cancers and 70 to 90 percent of cancers that become resistant to hormone therapy, called castration resistant prostate cancers. Based on this study, these prostate cancers could be more effectively treated using a combination of drugs that target the AR cell signaling pathway and the compensating survival pathway, called the PI3K/AKT/mTOR pathway, said study senior author Dr. Hong Wu, a professor of molecular and medical pharmacology and a Jonsson Cancer Center researcher.

The study appears in the June 14, 2011 of the peer-reviewed journal Cancer Cell.

"The most significant take home message from this study is that certain prostate cancers can resist androgen deprivation therapy by activating an alternate pathway to drive its growth," Wu said. "We found that these two pathways are talking to each other, almost like regulatory circuitry, and helping each other get around attempts to kill the cancer. When we suppress one of these pathways, it essentially feeds the other."

Wu characterized the findings as surprising. What they discovered, she said, bucked conventional wisdom about the way PTEN negative or PTEN null prostate cancer operates.

"Most of the hypotheses have suggested that PTEN regulates the function of the androgen receptor pathway, which is opposite of what we show here," said Wu, who also is a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. "We had thought that when PTEN was lost, it activated the androgen receptor pathway, driving cancer growth. What we've found suggests that if PTEN is lost in cancer cells, then the cancer cells become androgen receptor-independent and rely on the PI3K pathway for growth and survival."

Wu's study showed that PTEN loss suppresses AR signaling and that leads cancer cells to become less dependent on the androgen receptor for survival. This is important, Wu said, because it addresses a key mechanism of resistance. Certain prostate cancers may resist hormone therapy and if you withdraw androgen as treatment, it enhances the activity of the PI3K pathway, which then takes over driving cancer growth. Both pathways must be hit to stifle growth of the cancer.

The study has important implications for those prostate patients with late stage disease, who often become resistant to hormone ablation therapy, said David J. Mulholland, a postdoctoral fellow in Wu's lab and first author of the study. Men who die of prostate cancer are those that become resistant to therapy and, as a consequence, their disease can spread or metastasize to other places, most often the bones.

"What we've shown here is a mechanism that could explain why anti-androgen therapy may fail in some patients," Mulholland said. "Their adapted to the low androgen receptor function and compensated by activating a survival pathway. It was a surprising result to show that these cells could continue to live without the signaling. Combining drugs that hit both pathways will be much more effective than using one alone."

The study was modeled in a mouse model created by the Wu laboratory in which PTEN and AR are absent in the epithelium. The findings were replicated using samples from cancerous prostates removed from patients, work done in collaboration with researchers at UCLA and the Specialized Program of Research Excellence (SPORE) in prostate cancer.

"We found similar result in both cases," Wu said. "The human cancers may behave the same way as the mouse models."

There are new generations of AR inhibitors that are potentially more effective than their predecessors being tested now in clinical trials. There also are drugs being tested that inhibit the PI3K pathway, which is commonly activated in a variety of cancers. Clinical trials currently are being designed at UCLA that will combine these types of drugs to cut off both the primary path and escape routes that use to survive.

Related Stories

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.