Ovarian cancer cells bully their way through tissue

June 14, 2011, Harvard Medical School

A team led by Joan Brugge, the Louise Foote Pfeiffer Professor of Cell Biology at Harvard Medical School, recently shed light on how ovarian cancer spreads. In a paper published in the July edition of the journal Cancer Discovery, the newest journal of the American Association for Cancer Research, Brugge and colleagues found that ovarian cancer cells act like bullies, using brute force to plow their way through tissue and colonize additional organs.

"This is the first time that mechanical force has been implicated in the spread of ovarian cancer," says Brugge, who is also chair of the Department of Cell Biology. "While this research is still preliminary, we are building a foundation for the development of treatments based on a robust understanding of the disease."

According to the National Cancer Institute, ovarian cancer accounts for about three percent of all cancers among women in the United States. It caused nearly 14,000 deaths in 2010 alone.

The ovaries and many other organs, such as the liver, stomach and intestines, are located in an anatomical space called the peritoneal cavity. The lining of this cavity is called the peritoneum, and its top layer is called the mesothelium. After an ovarian tumor develops, clusters of cancer cells are released into the peritoneal cavity. Each cluster floats around until it encounters the lining of the cavity. It attaches to the lining, spreads out and launches an invasion into the mesothelium. Brugge's team determined how ovarian cancer cells get through the mesothelium to colonize organs on the other side.

When researchers placed ovarian cancer cells and mesothelial cells together in a dish, the cancer cells formed a hole in the mesothelial layer, mirroring behavior that would occur in the body as an invasion proceeds. The team interfered with molecular components of the cancer cells one by one and used time-lapse microscopy to watch the result. If the hole failed to form, the researchers knew that they'd discovered a critical player in the invasion process.

They identified three such players—integrin, talin and myosin, which are all proteins known to play a role in cell movement. Integrin sticks out from the cancer cells and grabs hold of scaffolding surrounding the mesothelium. Myosin, which is a motor, pulls on integrin via talin. As a result, the protruding cancer cells gain traction and can now force mesothelial cells out of the way.

"The cancer cells act like bullies," says first author Marcin Iwanicki, a postdoctoral researcher in Brugge's lab. "Instead of relying on a sophisticated biochemical process to achieve their goal, they simply push mesothelial cells apart."

"Eventually, it might be possible to prevent or reverse the invasion process," says Brugge. "We hope that our work will inform such treatments in the future."

Related Stories

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.