Stem cell model offers clues to cause of inherited ALS

June 21, 2011, University of California - San Diego
This image shows motor neurons (green) derived from ALS induced pluripotent stem cells forming neuromuscular junctions (red). Credit: Image courtesy of Alysson Muotri, UCSD.

An international team of scientists led by researchers at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis (ALS) to reveal for the first time how reduced levels of a specific protein may play a central role in causing at least one inherited form of the disease.

The work, published in the June 2011 online issue of the journal , could help scientists overcome a major hurdle in the study and treatment of ALS, an incurable also known as Lou Gehrig's disease. ALS is universally fatal, with a median age of onset of 55 years and survival of two to five years after symptoms appear. Past research efforts have long been stymied by difficulties in translating successful drug tests in animal models of ALS to humans.

"There is an urgent need for ALS human models that can be translated into clinical trials to verify therapeutic targets in the human ," said Alysson R. Muotri, PhD, assistant professor in the UCSD Departments of Pediatrics and Cellular and Molecular Medicine, and one of the study's senior authors. "Rodents have been used in the past and still have a critical impact in unveiling the complexity of ALS, but the vast majority of drugs that have demonstrated efficacy in rodent models have not done the same in preclinical and clinical human trials."

In the new work, Muotri and colleagues turned to iPSCs derived from the of patients with a familial form of ALS called ALS8 to create that provided a novel in vitro model of the disease. iPSCs from ALS patients have been described before, but finding cellular and molecular phenotypes has proved to be a continuing challenge. The use of a familial form of ALS offered an advantage since the mutated gene could be tracked during motor neuron differentiation.

"We don't know what causes most cases of ALS, but for roughly 10 percent of patients with ALS, the disease is the result of inherited genetic mutations," Muotri said. "One of these familial forms is ALS8, which results from mutations in the VAPB gene. Using iPSCs from several patients from two independent families, we found that VAPB protein levels are reduced in ALS8-derived motor neurons compared to similar cells from non-carrier siblings of ALS8 patients."

Muotri said the finding suggests reduced VAPB protein levels may be a key to the development of ALS8 and perhaps other forms of the disease as well, including sporadic or non-hereditary ALS, where reduced VAPB have also been documented.

"The VAPB protein is involved in many cellular processes, so it seems likely it contributes to the pathogenesis of other forms of ALS," Muotri said. "We don't yet know how the loss of VAPB is involved in causing familial or sporadic ALS, but the new ability to study this disease in human cells provides an unprecedented opportunity to answer that question, to develop new early diagnostic tools and to identify new targets for future drugs and therapies."

Related Stories

Recommended for you

Psychiatric disorders share an underlying genetic basis

June 21, 2018
Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at ...

Deep data dive helps predict cerebral palsy

June 21, 2018
When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica's frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, ...

Genetic variation in progesterone receptor tied to prematurity risk, study finds

June 21, 2018
Humans have unexpectedly high genetic variation in the receptor for a key pregnancy-maintaining hormone, according to research led by scientists at the Stanford University School of Medicine. The finding may help explain ...

Shared genetics may shape treatment options for certain brain disorders

June 20, 2018
Symptoms of schizophrenia and bipolar disorder, including psychosis, depression and manic behavior, have both shared and distinguishing genetic factors, an international consortium led by researchers from Vanderbilt University ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.