Team decodes evolution of skin and ovarian cancer cells

June 29, 2011

A team of researchers led by scientists at the University of California, San Francisco has developed a way to uncover the evolution of human cancer cells, determining the order in which mutations emerge in them as they wend their way from a normal, healthy state into invasive, malignant masses.

The work may give doctors a new way to design diagnostics for detecting the signs of early cancers, when they are generally more treatable than in their later stages.

This approach relies on teasing apart the DNA of , and it is something like genetic archeology. Just as archeologists sometimes date objects found at an excavation site by the age of the objects found around them, the new technique allows scientists to dig into the DNA of cancer cells and determine which came first by looking at surrounding .

Using the new technique, the researchers were able to identify not just the mutations that differentiate two types of human cancer from normal cells, but the actual order in which some of the most key mutations occurred.

"You can tell which mutations come really early and which come late," said UCSF Raymond Cho, MD, PhD.

Cho and his UCSF colleagues developed the technique in collaboration with researchers led by Paul Spellman and Joe Gray at Oregon Health & Science University, Elizabeth Purdom at the University of California, Berkeley and scientists at Samsung Advanced Institute of Technology. The work appears this week in the journal Cancer Discovery.

Mutations Lead to Cancer

Cancer is a profoundly heterogeneous disease, making it more like thousands of diseases than just one. Different types of cancer differ in terms of the organs they affect, how they behave in the body, how they respond to treatment and even how they look under the microscope. And most fundamentally, they differ genetically.

Cancer emerges because of mutations in the DNA of cells. Any number of things can cause these mutations – for instance, family genetics, infections, toxins, radioactivity, sunlight or some combination of each. Over time these mutations shut down some genes, crank up the production of others and lead in the end to the cell's proliferation, growth, spread and all the other ominous hallmarks of cancer.

Interested in finding which mutations come first, Cho and his colleagues developed a way of teasing them apart by virtue of the fact that long pieces of DNA in cancers often abnormally double in number. The technique relies on determining the sequence of the cancer to see which mutations are also doubled, indicting they occurred before the duplication.

They worked with a type of skin cancer known as cutaneous squamous cell carcinoma, which has among the highest numbers of mutations of any cancer, and also with a common type of ovarian cancer. By examining the accumulation of copies of TP53, a gene known to be involved with these forms of cancer, they found that complex changes in TP53 occurred earlier in most cases, rather than later, as had been previously believed.

The results are significant, said Cho, because the ability to identify the actual sequence of mutations will help scientists determine which lead to precancerous lesions and which produce invasive carcinomas.

More information: The article, "Temporal Dissection of Tumorigenesis in Primary cancers" is authored by Steffen Durinck, Christine Ho, Nicholas J. Wang, Wilson Liao, Lakshmi R. Jakkula, Eric A. Collisson, Jennifer Pons, Sai-Wing Chan, Ernest T. Lam, Catherine Chu, Kyunghee Park, Sung-woo Hong, Joe S. Hur, Nam Huh, Isaac M. Neuhaus, Siegrid S. Yu, Roy C. Grekin, Theodora M. Mauro, James E. Cleaver, Pui-Yan Kwok, Philip E. LeBoit, Gad Getz, Kristian Cibulskis, Jon C. Aster, Haiyan Huang, Elizabeth Purdom, Jian Li, Lars Bolund, Sarah T. Arron, Joe W. Gray, Paul T. Spellman, and Raymond J. Cho. It appears in the July 2011 issue of the journal Cancer Discovery. See: dx.doi.org/10.1158/2159-8290.CD-11-0028

Related Stories

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.