Researchers demystify a fountain of youth in the adult brain

July 13, 2011
Modern human brain
Modern human brain. Credit: Univ. of Wisconsin-Madison Brain Collection.

Duke University Medical Center researchers have found that a "fountain of youth" that sustains the production of new neurons in the brains of rodents is also believed to be present in the human brain. The existence of a vital support system of cells around stem cells in the brain explains why stem cells by themselves can't generate neurons in a lab dish, a major roadblock in using these stem cells for injury repair.

"We believe these findings will have important implications for human therapy," said Chay Kuo, M.D., Ph.D., George Brumley Jr. assistant professor of Cell Biology, and Neurobiology, and senior author of the study.

The study is the cover story in the July issue of Neuron, published online July 14.

The scientists found that neighboring "epithelial-like" ependymal cells – not stem cells themselves – maintain a special structure that keeps neural stem cells "neurogenic," able to make new .

Currently, when neural stem cells are harvested for growth in culture, however, the ependymal cells are not removed along with them, and this can be a problem.

"Neural stem cells in a lab dish don't continue to make neurons as they do inside the brain," Kuo said. "Instead, they often produce astrocytes, a cell type that may not be helpful to re-implant into a brain." He said that uncontrolled astrocyte growth can lead to brain tumors.

In a series of experiments, the researchers found that the generation of new neurons depended on what he calls the "ugly sibling" of the stem cells, the ependymal cell that has long, moving, hair-like cilia that cover its surface. Kuo decided to study these cells because the lateral ventricles in the brain, where adult neural stem cells reside, are also the last area of a developing brain that grows ependymal cells.

"The common radial glial progenitors in the developing nervous system prior to birth give rise to both the ependymal cells and the adult stem cells," Kuo said. "So it made sense to study these niche cells as well as the stem cells."

"There is this fountain of youth inside the adult brain that actively makes new neurons," Kuo said. "Yet we don't know how this fountain is constructed or maintained."

Kuo and his colleagues found that the Foxj1 transcription factor, a class of master proteins that turn other genes on and/or off, is critical to instruct ependymal cells to change shape and assemble into pinwheel-like architecture surrounding stem cells. He said the lateral membranes of mature ependymal cells are shaped like machine cogs or fingers that lace together.

The researchers determined that the structural protein Ankyrin 3 was turned on by Foxj1 in these ependymal cells to provide structural support for the delicate neural stem cells. Signals generated by this structural support will probably be important for instructing introduced neural stem cells to make neurons in therapeutic settings, he said.

Kuo said he would not have examined the role of ependymal cell Foxj1 in relation to neural stem cells if not for his Cell Biology Chair, Brigid Hogan, Ph.D., whose lab next door is a world leader in understanding adult lung and airway stem cell function. Likewise, Kuo said pioneering work on ankyrins by Duke Cell Biology and Howard Hughes Medical Institute Investigator Vann Bennett, M.D., Ph.D., a co-author on the paper, paved the way for study of these proteins in the neural stem cell environment.

Future studies will look closely at the details of the niche environment to learn more. "Understanding the environmental control of neuron production in the adult will be crucial for future therapeutic strategies using human to replace neurons," Kuo said.

Related Stories

Recommended for you

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

hush1
5 / 5 (1) Jul 13, 2011
Fox family factors stagger the imagination. Nothing comes close to their explanatory powers underpinning how the brain works.

We will never know what Chay Kuo's alternative was to this path of exploration.
SteveL
5 / 5 (1) Jul 13, 2011
Great things can happen when leaders in fields of research can work closely together and share.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.