Precision gene targeting in stem cells corrects disease-causing mutations

July 15, 2011, Whitehead Institute for Biomedical Research

Using two distinct methods, Whitehead Institute researchers have successfully and consistently manipulated targeted genes in both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells (adult cells that have been reprogrammed to an embryonic stem cell-like state).

In one case, scientists employed proteins known as nucleases (ZFNs) to change a single base pair in the , allowing them either to insert or remove mutations known to cause early-onset Parkinson's disease (PD). The second method relies on proteins called transcription activator like effector nucleases (TALENs) capable of altering specific with similar efficiency and precision as ZFNs. Both sets of experiments were conducted in close collaboration with scientists at Sangamo BioSciences.

Targeted addresses a problem that has been plaguing human – the ability to cleanly and site-specifically modify the genomes of human ES and iPS cells. Realizing the therapeutic promise of these cells depends on such changes to fix disease-causing before the cells could be transplanted into patients or to create cell lines that researchers can use to study genetic diseases.

Such disease studies—the much-heralded "disease in a dish" approach—and the search for potentially disease-modifying drugs require the use of cells and controls that are genetically identical, except for a specific alteration whose impact can then be observed.

"This is very relevant for diseases like Parkinson's, which likely will display only subtle phenotypes in the Petri dish. It is very important that the cells be genetically identical and have the same history, then make or remove only that mutation," says Whitehead Founding Member Rudolf Jaenisch. "If you use control cells from one person and a diseased cell from another person, it's like comparing apples and oranges."

As reported in a paper published July 22 in Cell, first author Frank Soldner used ZFNs created by Sangamo BioSciences to generate, from both normal and PD patients' cells, sets of mutated and control cell lines. By either removing or adding a mutation to the alpha-synuclein gene associated with PD, Soldner created lines of cells whose genomes differ only by a single base pair. Subsequent differences seen in comparative studies of the cells can therefore be attributed to the mutation in question.

"ZFNs can transfer a mutation without any other alterations to the genome, such as leaving in unwanted pieces of DNA that could be harmful," says Soldner, a postdoctoral researcher in Jaenisch's lab. "This precision is ideal for drug research for PD and other diseases, but it is also one more step toward using ES or iPS cells therapeutically."

In its continual quest to refine human stem cell technology, the Jaenisch lab has also been investigating other gene targeting approaches. One option is to use TALENs, which use a type of DNA-binding domain originally found in some plant pathogens. TALENs can be designed and created in academic labs.

To compare TALENs' ability to alter genes to that of ZFNs', two postdoctoral researchers in Jaenisch's lab, Dirk Hockemeyer and Haoyi Wang, repeated an earlier ZFN experiment, this time using TALENs created by scientists at Sangamo BioSciences. In research reported earlier this month in Nature Biotechnology, Hockemeyer and Wang show that these TALENs can also modify genes as efficiently and precisely as ZFNs in ES and iPS .

"These are amazing proteins," says Wang. "In theory, everything ZFNs do, they should be able to do as well."

"This opens up a lot of possibilities of what we will be able do because the generation of TALENs is extremely versatile," adds Hockemeyer. "It appears they, along with ZFNs, will help us overcome the challenges of developing human ES and iPS cell technology."

More information: "Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations," Cell, July 22, 2011.
"Genetic engineering of human pluripotent cells using TALE nucleases," Nature Biotechnology, July 7, 2011.

Related Stories

Recommended for you

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.