Medical research

For large bone injuries, it's Sonic hedgehog to the rescue

A USC Stem Cell study in npj Regenerative Medicine presents intriguing evidence that large bone injuries might trigger a repair strategy in adults that recapitulates elements of skeletal formation in utero. Key to this repair ...

Medical research

Resistance mechanisms to CAR-T cell therapy ID'd in ALL

For patients with acute lymphoblastic leukemia with resistance to C19 CAR T-cell therapy, resistance mechanisms that can be detected prior to treatment have been identified, according to a study presented at the annual meeting ...

Genetics

Study identifies key regulator of cell differentiation

Embryonic stem cells and other pluripotent cells divide rapidly and have the capacity to become nearly any cell type in the body. Scientists have long sought to understand the signals that prompt stem cells to switch off ...

page 1 from 40

Stem cell

Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are isolated from the inner cell mass of blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

Stem cells can now be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells from a variety of sources, including umbilical cord blood and bone marrow, are routinely used in medical therapies. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.

This text uses material from Wikipedia, licensed under CC BY-SA