Eliminating protein in specific brain cells blocks nicotine reward

July 26, 2011

Removing a protein from cells located in the brain's reward center blocks the anxiety-reducing and rewarding effects of nicotine, according to a new animal study in the July 27 issue of The Journal of Neuroscience. The findings may help researchers better understand how nicotine affects the brain.

Nicotine works by binding to proteins called nicotinic on the surface of . In the new study, researchers led by Tresa McGranahan, Stephen Heinemann, PhD, and T. K. Booker, PhD, of the Salk Institute for Biological Studies, found that removing a specific type of nicotinic receptor from brain cells that produce dopamine — a chemical released in response to reward — makes mice less likely to seek out nicotine. The mice also did not show reductions in anxiety-like behaviors normally seen after nicotine treatment. Smokers commonly report relief as a key factor in continued smoking or relapse.

"These findings show that the rewarding and anxiety-reducing properties of nicotine, thought to play a key role in the development of tobacco addiction, are related to actions at a single set of brain cells," said Paul Kenny, PhD, an expert on drug addiction at Scripps Research Institute, who was unaffiliated with the study.

Previous studies showed blocking the alpha4 nicotinic receptor within the ventral tegmental area (VTA) — a brain region important in motivation, emotion, and addiction — decreases the rewarding properties of nicotine. Because alpha4 receptors are present on several cell types in the VTA, it was unclear how nicotine produced pleasurable feelings.

To zero in on the circuit important in the brain's response to nicotine, researchers developed mice with a mutation that left them unable to produce the alpha4 receptor, but only on dopamine brain cells. Mice lacking alpha4 receptors in these cells spent less time looking to obtain nicotine compared with normal mice, suggesting the alpha4 receptors are required for the rewarding effects of nicotine. Nicotine also failed to reduce anxiety-like behaviors in the mutant mice, as it normally does in healthy mice.

"Identification of the type of nicotinic receptors necessary for two key features of nicotine addiction — reward and anxiety — may help us better understand the pathway that leads to dependence, and potential treatment for the one billion cigarette smokers worldwide," McGranahan said. Diseases from tobacco use remain a major killer throughout the world, causing more than 5 million deaths per year.

The findings could guide researchers to a better understanding of the mechanisms of tobacco addiction and assist in the development of new drugs to treat tobacco addiction and provide relief from anxiety disorders, Kenny added.

Related Stories

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

2020
1 / 5 (1) Jul 26, 2011
YEAH!

Let's get on this one right away and put the cancer sticks out of business!
word-to-ya-muthas
aroc91
not rated yet Jul 26, 2011
You really needed another profile?
hush1
1 / 5 (1) Jul 26, 2011
Smoking is addiction.

"Identification of the type of nicotinic receptors necessary for two key features of nicotine addiction reward and anxiety may help us better understand the pathway that leads to nicotine dependence, and potential treatment for the one billion cigarette smokers worldwide," - Tresa McGranahan & Team.

One billion rationalizations vs. Science.
C'mon Team.
What's the secret relief for the rest of the 5.775 billion non smokers?
(Knowing chances that the one billion will die before them?)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.