Combating fungal diseases

August 30, 2011, Friedrich Miescher Institute for Biomedical Research
Combating fungal diseases
Cells are dying when zinc cannot bind to Dicer and the protein therefore stays in the cytoplasm

(Medical Xpress) -- Scientists at the Friedrich Miescher Institute for Biomedical Research have discovered a potential new approach for inhibiting the growth of pathogenic fungi. Their findings on the mechanism in question have been published online in the EMBO Journal. Ultimately, immunocompromised patients with fungal infections, in particular, could benefit from this work.

As temperatures soar and more and more people cool off at outdoor pools, the incidence of so called swimmer's ear - an infection of the - also rises. One of the agents causing this condition is a fungus of the Aspergillus genus. But while swimmer's ear (otomycosis) can be readily treated, other mycoses may be fatal - especially in patients with an impaired immune system. In such cases, it is obviously vital to understand how can be inhibited or even arrested.

A group of scientists led by Marc Buhler of the FMI, in collaboration with structural biologists at the ETH Zurich, have now identified a mechanism which, if blocked, should lead to marked inhibition of the growth of .

The research project is focusing on a protein known as Dicer. This protein plays a key role in the generation of small RNAs called siRNAs (short interfering RNAs), which are involved in selective suppression of . As reported in the online edition of the , the epigeneticists and structural biologists determined the three-dimensional structure of the C-terminal domain of the Dicer protein. In the process, they identified a novel zinc binding motif within an extended fold. When the binding of zinc to Dicer was prevented experimentally, it was no longer possible for the protein to become active at the appropriate location in the cell. Rather than being transported to the nucleus, it remained in the cytoplasm. At the same time, the pattern of gene activation was altered and the cells died off.

Interestingly, this motif is also present in a number of fungi which are pathogenic to humans. Commenting on the team's findings, Bühler says: "It's surprising and very encouraging to see how similar this part of the Dicer protein is in the various fungi investigated. So we hope to be able to inhibit growth by blocking zinc binding in those fungi, too. Another reason why this approach appears to be so promising is that this zinc-binding motif is not found in human Dicer. That means that, in a clinical situation, the fungal Dicer could be selectively inhibited without impairing the important functions of Dicer in human cells." This potential therapeutic approach could benefit in particular patients whose immune system is weakened as a result of organ transplantation or cancer, or people with Aids.

Explore further: Protein unmasks pathogenic fungi to activate immune response

More information: Barraud P, Emmerth S, Shimada Y, Hotz HR, Allain FH, Bühler M (2011) An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer, EMBO J. doi:10.1038/emboj.2011.300.

Related Stories

Protein unmasks pathogenic fungi to activate immune response

August 8, 2011
The first step in defending against a hostile attack is identifying the enemy. It's how a healthy immune system mounts a response to invading pathogens. In the case of certain fungi, however, the attacking cells may be so ...

Recommended for you

Research finds new mechanism that can cause the spread of deadly infection

April 20, 2018
Scientists at the University of Birmingham have discovered a unique mechanism that drives the spread of a deadly infection.

Selection of a pyrethroid metabolic enzyme CYP9K1 by malaria control activities

April 20, 2018
Researchers from LSTM, with partners from a number of international institutions, have shown the rapid selection of a novel P450 enzyme leading to insecticide resistance in a major malaria vector.

Study predicts 2018 flu vaccine will have 20 percent efficacy

April 19, 2018
A Rice University study predicts that this fall's flu vaccine—a new H3N2 formulation for the first time since 2015—will likely have the same reduced efficacy against the dominant circulating strain of influenza A as the ...

Low-cost anti-hookworm drug boosts female farmers' physical fitness

April 19, 2018
Impoverished female farm workers infected with intestinal parasites known as hookworms saw significant improvements in physical fitness when they were treated with a low-cost deworming drug. The benefits were seen even in ...

Zika presents hot spots in brains of chicken embryos

April 19, 2018
Zika prefers certain "hot spots" in the brains of chicken embryos, offering insight into how brain development is affected by the virus.

Super-superbug clones invade Gulf States

April 18, 2018
A new wave of highly antibiotic resistant superbugs has been found in the Middle East Gulf States, discovered by University of Queensland researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.