Study puts a new spin on ibuprofen's actions

September 25, 2011
Neurons (green) and glial cells from isolated dorsal root ganglia express COX-2 (red) after exposure to an inflammatory stimulus (cell nuclei are blue). Lawrence Marnett and colleagues have demonstrated that certain drugs selectively block COX-2 metabolism of endocannabinoids -- naturally occurring analgesic molecules -- in stimulated dorsal root ganglia. Credit: Lawrence Marnett and colleagues and Nature Chemical Biology

Ibuprofen, naproxen, and related non-steroidal anti-inflammatory drugs (NSAIDs) – the subjects of years of study – still have some secrets to reveal about how they work.

Vanderbilt University investigators have discovered surprising new insights into the actions of NSAIDs. Their findings, reported Sept. 25 in Nature Chemical Biology, raise the possibility of developing a new class of inflammation- and pain-fighting medicines.

NSAIDs block the activity of the cyclooxygenase enzymes, COX-1 and COX-2.

"Until about three years ago, we thought we knew everything there was to know about these enzymes and these inhibitors, but we were unaware of some of the details of how they work," said Lawrence Marnett, Ph.D., director of the Vanderbilt Institute of Chemical Biology and professor of Biochemistry, Chemistry and Pharmacology.

COX-1 and COX-2 oxygenate (add oxygen to) the lipid arachidonic acid to generate biologically active prostaglandins. Marnett and his team discovered about 10 years ago that COX-2 (but not COX-1) also oxygenates endocannabinoids – naturally occurring analgesic and anti-inflammatory agents that activate cannabinoid receptors (the same receptors that marijuana activates).

The investigators then made a puzzling observation. They found that ibuprofen was a more potent inhibitor of endocannabinoid metabolism compared to arachidonic acid metabolism.

"This was the same drug inhibiting two substrates of the same protein differently," Marnett said. "We didn't understand it."

In the current report, the researchers surveyed a series of different types of NSAIDs for inhibition of COX-2. They included the "mirror-image" versions of ibuprofen, and flurbiprofen (these drugs come in two different chemical configurations – a "right hand" (R) version and a "left hand" (S) version – over-the-counter is a mixture of both forms). It had previously been assumed that only the S-forms of these NSAIDs (S-profens) were able to inhibit COX-2.

Marnett and colleagues found that the R-profens inhibited endocannabinoid, but not arachidonic acid, oxygenation.

The researchers also determined that R-profens selectively block endocannabinoid metabolism in isolated dorsal root ganglia (neurons and glial cells from the spinal column). They found that treatment of these cultures with an inflammatory stimulus increased expression of COX-2 and stimulated release of arachidonic acid and endocannabinoids, which were oxidized by COX-2. The R-profens inhibited metabolism of the endocannabinoids (and increased their concentrations), but not arachidonic acid.

The findings offer a potential explanation for the reported observation that R-flurbiprofen is analgesic in people and that it inhibits neuropathic pain in a mouse model.

"We're proposing that R-flurbiprofen is effective in this neuropathic pain setting because it is preventing the metabolism of endocannabinoids by COX-2; so it's maintaining endocannabinoid tone and that's the basis for the analgesic activity," Marnett said.

"It's exciting because you will only see this effect at sites of inflammation where COX-2 might play a role in depleting endocannabinoids. Selective inhibitors like the R-profens could represent a new way to target analgesia without having the GI, and maybe cardiovascular, side effects of traditional ."

Marnett and his team will pursue this idea by studying in vivo models of neuroinflammation to determine if these drugs – and new compounds they are developing – work to inhibit endocannabinoid oxidation and maintain endocannabinoid tone.

Explore further: Common painkillers linked to irregular heart rhythm: study

Related Stories

Common painkillers linked to irregular heart rhythm: study

July 4, 2011
Commonly used painkillers to treat inflammation are linked to an increased risk of irregular heart rhythm (known as atrial fibrillation or flutter), concludes a study published in the British Medical Journal today.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.