Two-dimensional learning: Viewing computer images causes long-term changes in nerve cell connections

September 26, 2011, Ruhr-University Bochum

Viewing two-dimensional images of the environment, as they occur in computer games, leads to sustained changes in the strength of nerve cell connections in the brain. In Cerebral Cortex, Prof. Dr. Denise Manahan-Vaughan and Anne Kemp of the RUB Department for Neurophysiology report about these findings. When the researchers presented rats with new spatial environments on a computer screen, they observed long-lasting changes in the communication between nerve cells in a brain structure which is important for long-term memory (hippocampus). Thus, the researchers showed for the first time that active exploration of the environment is not necessary to obtain this effect.

"These results help to understand to what extent digital learning in the brain competes with learning in the ", says Manahan-Vaughan. "This is interesting for developing strategies for use of digital media in school. Such strategies can prove a useful antidote to the apathy in children towards the traditional teaching methods."

Two mechanisms for learning in the brain

In the hippocampus, two different mechanisms for the long-term storage of new information are at work . Long-term potentiation leads to an increase in the communication between . Long-term depression, on the other hand, weakens the connections between the cells. "According to our results, react with potentiation at the beginning, for instance when we enter a new room ", explains Manahan-Vaughan. "Long-term depression then allows us to refine this new cellular information and encode the details and characteristics of the room."

Learning without movement

The Bochum team showed that long-term depression takes place in a special part of the hippocampus, when rats actively explore their environment. "We were, however, not sure if these changes in were influenced by the movement of the animals or were purely due to learning about the novel objects", explains Manahan-Vaughan. In order to separate both effects, the researchers presented the spatial context via a computer screen so that active exploration of the environment was unnecessary. Long-term depression occurred also without movement, meaning that it mediates passive learning in the hippocampus.

Computer and TV compete with learning in school

"School teachers, particularly at the junior school level have become increasingly concerned at their observations that each generation of school children exhibits shorter attention spans and poorer retention abilities than the previous generation", states Manahan-Vaughan. "One explanation for this is the ever increasing use of the digital media by school children. Our results indeed show that mammals can learn equally well when they passively view information on a computer screen compared to actively exploring the environment for this information. Television or computer games after school may compete with the information learned in school."

Explore further: Motor memory: The long and short of it

More information: A. Kemp, D. Manahan-Vaughan (2011). Passive Spatial Perception Facilitates the Expression of Persistent Hippocampal Long-Term Depression, Cerebral Cortex, doi:10.1093/cercor/bhr233

Related Stories

Motor memory: The long and short of it

September 13, 2011
For the first time, scientists at USC have unlocked a mechanism behind the way short- and long-term motor memory work together and compete against one another.

Recommended for you

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.