Two-dimensional learning: Viewing computer images causes long-term changes in nerve cell connections

September 26, 2011

Viewing two-dimensional images of the environment, as they occur in computer games, leads to sustained changes in the strength of nerve cell connections in the brain. In Cerebral Cortex, Prof. Dr. Denise Manahan-Vaughan and Anne Kemp of the RUB Department for Neurophysiology report about these findings. When the researchers presented rats with new spatial environments on a computer screen, they observed long-lasting changes in the communication between nerve cells in a brain structure which is important for long-term memory (hippocampus). Thus, the researchers showed for the first time that active exploration of the environment is not necessary to obtain this effect.

"These results help to understand to what extent digital learning in the brain competes with learning in the ", says Manahan-Vaughan. "This is interesting for developing strategies for use of digital media in school. Such strategies can prove a useful antidote to the apathy in children towards the traditional teaching methods."

Two mechanisms for learning in the brain

In the hippocampus, two different mechanisms for the long-term storage of new information are at work . Long-term potentiation leads to an increase in the communication between . Long-term depression, on the other hand, weakens the connections between the cells. "According to our results, react with potentiation at the beginning, for instance when we enter a new room ", explains Manahan-Vaughan. "Long-term depression then allows us to refine this new cellular information and encode the details and characteristics of the room."

Learning without movement

The Bochum team showed that long-term depression takes place in a special part of the hippocampus, when rats actively explore their environment. "We were, however, not sure if these changes in were influenced by the movement of the animals or were purely due to learning about the novel objects", explains Manahan-Vaughan. In order to separate both effects, the researchers presented the spatial context via a computer screen so that active exploration of the environment was unnecessary. Long-term depression occurred also without movement, meaning that it mediates passive learning in the hippocampus.

Computer and TV compete with learning in school

"School teachers, particularly at the junior school level have become increasingly concerned at their observations that each generation of school children exhibits shorter attention spans and poorer retention abilities than the previous generation", states Manahan-Vaughan. "One explanation for this is the ever increasing use of the digital media by school children. Our results indeed show that mammals can learn equally well when they passively view information on a computer screen compared to actively exploring the environment for this information. Television or computer games after school may compete with the information learned in school."

Explore further: Motor memory: The long and short of it

More information: A. Kemp, D. Manahan-Vaughan (2011). Passive Spatial Perception Facilitates the Expression of Persistent Hippocampal Long-Term Depression, Cerebral Cortex, doi:10.1093/cercor/bhr233

Related Stories

Motor memory: The long and short of it

September 13, 2011
For the first time, scientists at USC have unlocked a mechanism behind the way short- and long-term motor memory work together and compete against one another.

Recommended for you

No evidence of hidden hearing loss from common recreational noise: study

September 26, 2017
Exposure to loud noises during common recreational activities is widely cited as a cause of "hidden hearing loss." A new study of young adults, however, finds that while hearing is temporarily affected after attending a loud ...

Memory for details matures gradually

September 26, 2017
In contrast to previous assumptions, the hippocampus, a brain structure that is central to learning and memory, does not complete its maturation until adolescence. Scientists of the Max Planck Institute for Human Development, ...

Premature birth linked to older 'brain age' in adult life

September 26, 2017
New King's College London research suggests that babies born very prematurely show accelerated brain development in adult life, as their brains look 'older' compared to non-premature babies.

Study reveals breakthrough in decoding brain function

September 25, 2017
If there's a final frontier in understanding the human body, it's definitely not the pinky. It's the brain.

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

Brain guides body much sooner than previously believed

September 25, 2017
The brain plays an active and essential role much earlier than previously thought, according to new research from Tufts University scientists which shows that long before movement or other behaviors occur, the brain of an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.