Findings suggest how cancer cells can become resistant to DNA damage-inducing treatments

October 23, 2011, University of California - Davis

An international team of scientists led by UC Davis researchers has discovered that DNA repair in cancer cells is not a one-way street as previously believed. Their findings show instead that recombination, an important DNA repair process, has a self-correcting mechanism that allows DNA to make a virtual u-turn and start over.

The study's findings, which appear in the Oct. 23 online issue of the journal Nature, not only contribute new understanding to the field of basic cancer biology, but also have important implications for potentially improving the efficacy of cancer treatments.

"What we discovered is that the pathway called recombination is able to reverse itself," said Wolf-Dietrich Heyer, UC Davis professor of microbiology and of and co-leader of Molecular Oncology at UC Davis Cancer Center. "That makes it a very robust process, allowing to deal with DNA damage in many different ways. This repair mechanism may have something to do with why some cancer cells become resistant to radiation and chemotherapy treatments that work by inducing DNA damage."

Heyer likens this self-correcting ability of the DNA repair system to driving in a modern city where u-turns and two-way streets make it easy to rectify a wrong turn. "How much harder would it be to re-trace your path if you were in a medieval Italian city with only one-way streets," he said.

In the current study, Heyer and his colleagues used yeast as a model system to elucidate the mechanisms of DNA repair. They expect their findings, like most that come out of work on yeast, will be confirmed in humans. "Whether in yeast or humans, the pathways that repair DNA are the same," Heyer said.

The research team used to observe in action on strands of DNA. They saw a presynaptic filament called Rad51 regulating the balance between one enzyme (Rad55-Rad57) that favors recombination repair and another (Srs2) that inhibits recombination repair. By controlling the balance between the two enzymes, Rad51 can initiate genetic repair - or the u-turn - as needed.

"It is a tug-of-war that has important implications for the cell because, if recombination occurs at the wrong time in the wrong place, the cell may die as a consequence." The ability of the repair system to abort ill-fated repair attempts, gives the cell a second shot, improving cellular survival after its DNA is damaged. This is exactly what is dreaded in .

"There are a lot of hints in the scientific literature suggesting that DNA repair contributes to resistance to treatments that are based on inducing DNA damage such as radiation or certain types of chemotherapy," Heyer said. "The ability of cancer cells to withstand directly affects treatment outcome, and understanding the fundamental mechanisms of the DNA repair systems will enable new approaches to overcome treatment resistance."

Heyer said the team's next step is to look at the enzyme system in humans and see whether they find the same principles at work. This work has received funding and has already begun. One application of this work will be to target the self-correcting mechanism in cancer cells as a way of sensitizing them to radiation and/or chemotherapy treatments.

"If we can confirm that these types of mechanisms exist in human cells, then we will have an approach for making cancer cells more sensitive to DNA damage-inducing treatments."

Explore further: Heat helps cancer drugs battle cancer

Related Stories

Heat helps cancer drugs battle cancer

May 10, 2011
(PhysOrg.com) -- Localized hyperthermia has been used occasionally with cancer drugs for some time, but until now, the reason it helps has been a mystery. In a report in the Proceedings of the National Academy of Sciences, ...

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.