New findings contradict dominant theory in Alzheimer's disease

October 28, 2011

For decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged proteins between cells, which eventually result in neurodegeneration. Scientists at Lund University, Sweden, have now presented a study that turns this premise on its head.

The research group's data offers an opposite hypothesis, suggesting that it is in fact the neurons' inability to secrete beta-amyloid that is at the heart of in Alzheimer's disease.

The study, published in the October issue of the , shows an increase in unwanted intracellular beta-amyloid occurring early on in Alzheimer's disease. The accumulation of beta-amyloid inside the neuron is here shown to be caused by the loss of normal function to secrete beta-amyloid.

Contrary to the dominant theory, where aggregated extracellular beta-amyloid is considered the main culprit, the study instead demonstrates that reduced secretion of beta-amyloid signals the beginning of the disease.

The damage to the neuron, created by the aggregated toxic beta-amyloid inside the cell, is believed to be a prior step to the formation of plaques, the long-time hallmark of the disease.

Professor Gunnar Gouras, the senior researcher of the study, hopes that the surprising new findings can help push the research field in a new direction.

"The many investigators and screening for compounds that reduce secreted beta-amyloid have it the wrong way around. The problem is rather the opposite, that it is not getting secreted. To find the root of the disease, we now need to focus on this critical intracellular pool of beta-amyloid.

"We are showing here that the increase of intracellular beta-amyloid is one of the earliest events occurring in Alzheimer's disease, before the formation of plaques. Our experiments clearly show a decreased secretion of beta-amyloid in our primary neuron disease model. This is probably because the cell's metabolism and secretion pathways are disrupted in some way, leading beta-amyloid to be accumulated inside the cell instead of being secreted naturally", says Davide Tampellini, first author of the study.

The theory of early accumulation of beta-amyloid inside the cell offers an alternate explanation for the formation of plaques. When excess amounts of beta-amyloid start to build up inside the cell, it is also stored in synapses.

When the synapses can no longer hold the increasing amounts of the toxic peptide the membrane breaks, releasing the waste into the extracellular space. The toxins released now create the seed for other amyloids to gather and start forming the plaques.

Explore further: Road block as a new strategy for the treatment of Alzheimer's

More information: "Impaired β-Amyloid Secretion in Alzheimer's Disease Pathogenesis" www.jneurosci.org/content/31/43/15384.full

Related Stories

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011
Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Recommended for you

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.