Researchers lead creation of heart cells

October 25, 2011, Monash University
Embryoid body grown from genetically modified human embryonic stem cells expressing the green fluorescent protein in cardiac cells

Heart disease is the leading cause of death in Australia and now, in a major boost for drug development, scientists will be able to mimic its effects in a petri dish after identifying a new, reliable way of producing heart cells in the laboratory.

Published today in the prestigious journal, , the Monash University-led research shows how human can be consistently produced from , creating a potentially inexhaustible source for research and

Dr. David Elliott, and Professors Andrew Elefanty and Ed Stanley of Monash Immunology and Stem Cell Laboratories led the Monash group which collaborated with a number of institutions in and overseas.  

Dr. Elliott said the researchers were able to isolate the heart cells by turning them green. 

"We linked a green fluorescent marker - originally from a jelly-fish - to a gene found in heart cells, causing them to glow," Dr. Elliott said. 

"Using this cell line we have discovered two new cell surface proteins that we can use as 'handles' to allow us to grab only the cardiac cells from cultures containing different cell types. Importantly, we can use these handles to isolate and study cardiac cells grown from the stem cells of heart disease patients, and, in this way model heart disease in a dish.

"This finding is significant because up until now the development of drugs to treat heart disease has been hampered by the lack of a dependable supply of heart cells for experimentation," Dr. Elliott said.

Professor Elefanty said that in the future these markers could be used to pull out heart cells from cultures without having to use genetic modification to make the desired cells visible.

"We are now starting to make significant steps in the search for stem cell based therapies for and our findings will drive further research and discovery in this field," Professor Elefanty said. 

"This breakthrough is the result of more than ten years of work by the world-leading team at Monash and it illustrates the benefits of investing time and resources in stem cell research."

The team, led by Professors Elefanty and Stanley, are using similar strategies to isolate insulin-producing cells for the treatment of diabetes, and blood cells for the treatment of leukaemia.

The study was undertaken by a collaboration of 26 researchers from the Monash School of Biomedical Sciences, Monash Institute of Pharmaceutical Science, Walter and Eliza Hall Institute and Baker IDI Heart and Diabetes Institute, in Melbourne, as well as Leiden University Medical Centre and Netherlands Proteomics Institute, in the Netherlands.

The Australian researchers were funded by the Australian Stem Cell Center, the National Health and Medical Research Council of Australia, the Heart Foundation and Victorian State Government.

Complementary research involving Dr. Elliot, and Professors Stanley and Elefanty was also published today in Nature Biotechnology

Explore further: Heart cells derived from stem cells used to study heart diseases

Related Stories

Heart cells derived from stem cells used to study heart diseases

May 9, 2011
(PhysOrg.com) -- A research team at the University of Wisconsin School of Medicine and Public Health is the first to use heart cells derived from stem cells to specifically study certain genetic mechanisms of heart diseases.

Stem cells from cord blood could help repair damaged heart muscle

October 13, 2011
(Medical Xpress) -- New research has found that stem cells derived from human cord blood could be an effective alternative in repairing heart attacks.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.