Preventing dangerous nonsense in human gene expression

October 13, 2011, Public Library of Science

Human genes are preferentially encoded by codons that are less likely to be mistranscribed (or "misread") into a STOP codon. This finding by Brian Cusack and colleagues from the Max Planck Institute for Molecular Genetics in Berlin and the CNRS in Lyon and Paris is published in the open-access journal PLoS Genetics on October 13th, 2011.

Since the completion of the over a decade ago, a multitude of studies have investigated the forces that have shaped the genome over time. However, because gene expression errors are not inherited, they have been disregarded as an evolutionary force until now.

In biological systems, mistakes are made because the cellular machinery is complex and error prone. The errors made in copying DNA for transmission to offspring () have so far been the primary focus of . But errors are much more frequent in the day-to-day task of gene expression, for example in the transcription of DNA into RNA. This study shows how use a dual strategy of "prevention and cure" to deal with a specific type of gene expression error: transcriptional errors that create premature STOP codons (so-called "nonsense errors"). Nonsense errors can be highly toxic for the cell, so natural selection has evolved a strategy called nonsense-mediated decay (NMD) to "cure" such errors. However, this cure is inefficient. This work identifies a strategy of prevention that has evolved to compensate for the inefficiency of NMD by decreasing the frequency of nonsense errors. Natural selection achieves this through the avoidance of codons that are prone to nonsense errors and the preferential usage of codons robust to such errors.

Cusack et al's results provide a rationale for the evolution of robustness by implying that transcriptional errors are visible to natural selection because they are frequent and deleterious. According to the authors, "this raises the question of the past and present impact of such errors on human disease." An accompanying Perspectives article is published in on the same day.

Explore further: Outpatient electronic prescribing systems don't cut out common mistakes

More information: Cusack BP, Arndt PF, Duret L, Crollius HR (2011) Preventing Dangerous Nonsense: Selection for Robustness to Transcriptional Error in Human Genes. PLoS Genet 7(10): e1002276. doi:10.1371/journal.pgen.1002276

Related Stories

Outpatient electronic prescribing systems don't cut out common mistakes

June 30, 2011
Outpatient electronic prescribing systems don't cut out the common mistakes made in manual systems, suggests research published online in the Journal of the American Medical Informatics Association (JAMIA).

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.