Research could lead to new treatments for inflammatory bowel disease, viral infections

October 19, 2011

The intestinal ecosystem is even more dynamic than previously thought, according to two studies by UT Southwestern Medical Center researchers published in the latest issue of Science.

Taken together, these studies provide a new understanding of the unique intestinal environment and suggest new strategies for the prevention of (IBD) and , the researchers said.

"Mammals have evolved ways to limit invasion by the naturally occurring bacteria that live in their intestines even as viruses have developed strategies to break through those defenses and cause infection," said Dr. Julie Pfeiffer, assistant professor of microbiology.

Dr. Pfeiffer is senior author of a new study that finds that, even after 100 years, the polio virus has tricks to reveal. It is well known that after oral ingestion and passage through the , poliovirus can move throughout the body and occasionally cause paralysis. Her team showed that the virus uses the body's natural gut bacteria in order to become more infectious.

In the other study, senior author Dr. Lora Hooper, associate professor of immunology and microbiology and an investigator for the Howard Hughes Medical Institute (HHMI), reported that an antibiotic protein called RegIIIγ acts like a sentry to keep the 100 trillion bacteria that live in the gut from causing digestive havoc, by maintaining a "demilitarized zone" in the layer of mucus that normally covers the inner surface of the intestines.

Bacteria in the intestine normally work to help the body digest and deliver nutrients from food after eating. A 50-micron zone of separation, about half the width of a human hair, lies between the bacteria that live in the gut and the intestinal wall. In addition to mucous, that zone contains biologically active molecules like the protein RegIIIγ that Dr. Hooper's laboratory discovered in 2006.

Dr. Hooper and her colleagues showed for the first time how the protein works to police the intestinal demilitarized zone, preventing the naturally occurring bacteria from invading the wall of the intestine, where they can cause problems such as IBD.

"If too many bacteria invade this demilitarized zone, you get ramped up production of the protein RegIIIγ and it pushes them back," Dr. Hooper said.

In people with IBD – in which inflammation and the body's response to it can result in painful ulcers and bloody diarrhea – the demilitarized zone is compromised and more bacteria come in contact with the intestinal lining, she explained.

Dr. Hooper's four-year study, which compared the intestinal health of mice that lacked the protein with that of normal mice, found that mice lacking the protein also lacked the protected space between the bacteria and the intestinal lining.

The researchers have patented RegIIIγ as a potential antibiotic therapeutic, though further study is needed to determine if the protein could be developed to help people with IBD or related diseases.

In her study, Dr. Pfeiffer found that mice lacking the normal intestinal bacteria had half the death rate from polio as mice with intact . The findings were the opposite of what the researchers had expected because, like most people, they had expected the body's intestinal bacteria to offer protection from viral diseases as they have been shown to protect against bacterial infection, she explained.

So Dr. Pfeiffer's research team conducted a series of experiments to validate and expand that finding, all of which backed up the original conclusion. For instance, they found that virus exposed to bacteria could attach to human cells better than virus that lacked bacterial exposure.

Poliovirus is a very wasteful entity, with only about one in 200 viral particles able to cause infection. To determine whether bacteria could make poliovirus more efficient, Dr. Pfeiffer and colleagues incubated viruses in different warm environments to see how long they took to decay.

Virus incubated in salt water decayed over time, as expected. In contrast, virus incubated in any of several strains of bacteria became up to five times more infectious.

"Bacteria are literally activating the virus. There is nothing in that test tube that the virus can use for replication, so it must be increasing the viral infectivity," she said.

But the researchers wanted to delve deeper. They found that two different carbohydrates (polysaccharides) on the bacterial cell surface – lipopolysaccharide (LPS) and peptidoglycan – were able to spike poliovirus infectivity even in the absence of .

Explore further: Scientists unmask mysterious cells as key 'border patrol agents' in the intestine

Related Stories

Scientists unmask mysterious cells as key 'border patrol agents' in the intestine

May 9, 2011
Researchers at UT Southwestern Medical Center have uncovered new clues about how the intestine maintains friendly relations with the 100 trillion symbiotic bacteria that normally live in the digestive tract.

Protein from probiotic bacteria may alleviate inflammatory bowel disorders

May 23, 2011
A protein isolated from beneficial bacteria found in yogurt and dairy products could offer a new, oral therapeutic option for inflammatory bowel disorders (IBD), suggests a study led by Vanderbilt University Medical Center ...

Recommended for you

Targeting 'broken' metabolism in immune cells reduces inflammatory disease

July 12, 2017
The team, led by researchers at Imperial College London, Queen Mary University of London and Ergon Pharmaceuticals, believes the approach could offer new hope in the treatment of inflammatory conditions like arthritis, autoimmune ...

A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017
Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Researchers find piece in inflammatory disease puzzle

May 23, 2017
Inflammation is the process by which the body responds to injury or infection but when this process becomes out of control it can cause disease. Monash Biomedicine Discovery Institute (BDI) researchers, in collaboration with ...

Researchers reveal potential target for the treatment of skin inflammation in eczema and psoriasis

May 22, 2017
Superficially, psoriasis and atopic dermatitis may appear similar but their commonalities are only skin deep. Atopic dermatitis, also known as eczema, is primarily driven by an allergic reaction, while psoriasis is considered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.