Researchers determine how antibody recognizes key sugars on HIV surface

November 23, 2011

HIV is coated in sugars that usually hide the virus from the immune system. Newly published research reveals how one broadly neutralizing HIV antibody actually uses part of the sugary cloak to help bind to the virus. The antibody binding site, called the V1/V2 region, represents a suitable HIV vaccine target, according to the scientists who conducted the study. In addition, their research reveals the detailed structure of the V1/V2 region, the last part of the virus surface to be visualized at the atomic level.

The study was led by Peter D. Kwong, Ph.D., chief of the Section of the Vaccine Research Center at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Some people who have been infected with HIV for several years begin to make antibodies that can neutralize a wide range of . These broadly neutralizing antibodies bind to one of four sites on the virus. One site involves a sugar at a spot called amino acid residue 160. ( are the building blocks of proteins.) The sugar is located on the protein-based spikes that jut out of the surface of HIV.

The new study demonstrates how a broadly neutralizing called PG9 disarms the virus by grabbing hold of the sugar at residue 160, along with part of a second sugar and a short string of amino acid residues in the V1/V2 region of an HIV spike.

Similarly, a separate, recently published report* from the IAVI Neutralizing Antibody Center at The Scripps Research Institute showed how a different broadly neutralizing HIV antibody also binds to the virus via two sugars and a string of . Taken together, these two studies indicate that in some cases, the combination of viral sugars and amino acids can form the binding site for broadly neutralizing HIV antibodies.

The new study may also help scientists who are examining data from the clinical trial of the first HIV vaccine to demonstrate effectiveness in people (http://www.physorg.com/news172992753.html). Recent analyses of blood samples from that trial showed that study participants who were vaccinated and then developed antibodies to the V1/V2 region were less likely to become infected. Although the role of those antibodies in protection against HIV is unknown, this finding underscores how understanding antibody-V1/V2 binding could aid the design of a more effective .

Explore further: Researchers discuss challenges to developing broadly protective HIV vaccines

More information: JS McLellan et al., Structure of HIV-1 gp120 V1V2 domain with broadly neutralizing antibody PG9. Nature DOI: 10.1038/nature10696 (2011).

*R Pejchal et al., A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science DOI: 10.1126/science.1213256 (2011).

Related Stories

Recommended for you

Scientists jump hurdle in HIV vaccine design

May 26, 2017

Scientists at The Scripps Research Institute (TSRI) have made another important advance in HIV vaccine design. The development was possible thanks to previous studies at TSRI showing the structures of a protein on HIV's surface, ...

Study reveals how HIV virus destroys lung tissue

May 17, 2017

Up to 30 percent of HIV patients who are appropriately treated with antiretroviral therapies develop the chronic lung disease emphysema. New research from Weill Cornell Medicine investigators has uncovered a mechanism that ...

Researchers take an important step toward an HIV vaccine

May 17, 2017

Researchers from the University of Copenhagen have developed a strategy that can revolutionize vaccine design. The new strategy is used to develop vaccines that can prevent HIV infection and the development of AIDS.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.