Live-action films of worm sperm help researchers track critical fertility enzymes

November 1, 2011, San Francisco State University
This is a micrograph of a C. elegans ameoboid sperm. Credit: Aiza Go and Diana Chu

Compared to most other cells in an organism, sperm undergo a radical transformation to become compact and mobile delivery systems for paternal DNA. Even though sperm looks and moves quite differently across species, SF State researcher Diana Chu and colleagues now say that there are at least a few key enzymes that are critical for sperm development and mobility in species as different as mice and nematode worms.

The study by Chu, et al., was published today online by the journal Genetics.

These enzymes (called PP1 phosphatases) are multitaskers in the nematode, which Chu and the others discovered through unique live-action films of the enzymes at work. First, the enzymes help to separate during sperm cell division. After that, they play a role in the development of the sperm's pseudopods—the appendages that nematode sperm use to move. Pseudopods propel the sperm with a "treadmilling" motion, and the enzymes help disassemble the cell's inner skeleton in a way that pushes the treadmilling forward.

Fluorescent images of C. elegans sperm. Shown in red are GSP-3/4, phosphatases required for fertility, white are membranous organelles and green is major sperm protein, a C. elegans protein important for motility. GSP-3/4 is shown to be an important regulator of MSP in the Wu et al. paper. Credit: Jui-ching Wu and Diana Chu

Sperm in mammals like mice—and men—don't have pseudopods and don't move in the same way, but they still rely on the phosphatases for development and mobility. Further study of the phosphatases could someday shed light on some of the causes of human infertility, since the enzymes seem to be critical for sperm function.

Explore further: Making sperm from stem cells in a dish

More information: "PP1 phosphatases regulate multiple stages of sperm development and motility in Caenorhabditis elegans," published in advance online by Genetics. www.genetics.org/content/early/recent

Related Stories

Making sperm from stem cells in a dish

August 4, 2011
Researchers have found a way to turn mouse embryonic stem cells into sperm. This finding, reported in the journal Cell in a special online release on August 4th, opens up new avenues for infertility research and treatment. ...

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.