Promising and perilous? The ambivalent role of the CXCL12/ CXCR4 axis in heart repair

November 30, 2011

The chemokine CXCL12 acts as a chemical signal which mobilizes hematopoietic and other types of stem cells to leave the bone marrow and enter the circulation. Secretion of CXCL12 also guides these cells to sites at which the perfusion of tissue is sub-optimal due to localized obstruction of blood flow. These capabilities have made CXCL12 and its cognate receptor CXCR4 interesting candidates for therapies aimed at mitigating the effects of damage to the heart caused by myocardial infarction.

A team of researchers led by Professor Christian Weber of the Medical Center of the University of Munich has now taken a closer look at the normal physiological function of this ligand-receptor couple. Their results reveal that the molecules have "rather ambivalent roles," as Weber puts it.

remains one of the leading causes of death in Western societies. The condition occurs when parts of the heart muscle can no longer be adequately supplied with oxygen because blood flow through the coronary arteries is impeded. Researchers have therefore suggested that CXCL12 and CXCR4 could perhaps be used therapeutically to direct stem cells required for the formation of new blood vessels to migrate into ischemic, i.e. poorly perfused, tissues and thus help to increase blood flow in such areas.

"The precise of the chemokine and its receptor are poorly understood, although these are the crucial determinants of their therapeutic potential and of possible side-effects," Weber points out. "We therefore studied the effects of infarction in an animal model in which the amount of CXCR4 produced is specifically reduced. We focused on the molecular and cellular consequences of infarction, particularly with respect to the recovery of , formation of , severity of inflammation, and neovascularization of ."

To their surprise the researchers found that reduction of the CXCR4 level correlated with significant reductions in infarct size and the degree of tissue inflammation, but that recovery of blood flow and neovascularization were concomitantly decreased. These opposing effects together meant that heart function was equally impaired whether or not the level of CXCR4 function was reduced.

"However, we did see some evidence for an improvement in adaptation to sub-optimal levels of oxygen," Weber remarks. "Although we cannot assume that these results are immediately applicable to the human heart, they do point toward the possibility – especially in the case of systemic therapy – of quite critical side-effects. We should perhaps focus on more localized approaches, such as the direct injection of stem cells with higher levels of CXCR4, or of CXCL12 variants that remain confined to the damaged areas of the heart or retain their activity in the coronary arteries for longer." (suwe/PH)

Explore further: Researchers show molecule inhibits metastasis of colon, melanoma cancers

More information: Double-Edged Role of the CXCL12/CXCR4 Axis in Experimental Myocardial Infarction, Elisa A. Liehn et al.
Journal of the American College of Cardiology. Vol. 58, No. 23, 29. November 2011
doi: 10.1016/j.jacc.2011.08.033

Related Stories

Researchers show molecule inhibits metastasis of colon, melanoma cancers

October 10, 2011
Researchers at the Medical College of Wisconsin have shown that a protein can inhibit metastasis of colon and melanoma cancers. The findings are published in the October 10, 2011 issue of Proceedings of the National Academy ...

Study shows man-made fat may limit damage to heart attack victims

August 5, 2011
A man-made fat called Intralipid, which is currently used as a component of intravenous nutrition and to treat rare overdoses of local anesthetics, may also offer protection for patients suffering from heart attacks.

Recommended for you

New molecule may hold the key to triggering the regeneration and repair of damaged heart cells

August 21, 2017
New research has discovered a potential means to trigger damaged heart cells to self-heal. The discovery could lead to groundbreaking forms of treatment for heart diseases. For the first time, researchers have identified ...

Researchers investigate the potential of spider silk protein for engineering artificial heart

August 18, 2017
Ever more people are suffering from cardiac insufficiency, despite significant advances in preventing and minimising damage to the heart. The main cause of reduced cardiac functionality lies in the irreversible loss of cardiac ...

Lasers used to detect risk of heart attack and stroke

August 18, 2017
Patients at risk of heart attacks and strokes may be spotted earlier thanks to a diagnosis tool that uses near-infrared light to identify high-risk arterial plaques, according to research carried out at WMG, University of ...

Cholesterol crystals are sure sign a heart attack may loom

August 17, 2017
A new Michigan State University study on 240 emergency room patients shows just how much of a role a person's cholesterol plays, when in a crystallized state, during a heart attack.

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tthb
not rated yet Nov 30, 2011
yes, sorry; 'hitting' things around to much & not really, at crippled; sorry- as in the good; a circus, eh?; how are the bastards doing?; racial gratuitous, but crusade if They can help it

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.