Characterizing a toxic offender

December 9, 2011, RIKEN
Figure 1: Amyloid plaque in the brain of a human suffering from Alzheimer's disease in which Aβ43 forms the plaque core. Green shows the total Aβ peptide. Red shows the Aβ43 peptide and yellow shows these colors merged. Credit: 2011 Takashi Saito

The brains of individuals with Alzheimer's disease contain protein aggregates called plaques and tangles, which interfere with normal communication between nerve cells and cause progressive learning and memory deficits. Now, a research team led by Takaomi Saido from the RIKEN Brain Science Institute in Wako has identified a particular fragment of the amyloid precursor protein (APP) that contributes to the formation of plaques in the brain.

Enzymes cut APP to form shorter and, in Alzheimer's patients, these sticky fragments clump together to form . Most current research on this disease focuses on a 42 amino acid-long fragment called Aβ42, in part because other researchers had shown that APP mutations that increase Aβ42 cause Alzheimer's disease in some families. Other APP fragments are also found in the brain of individuals with Alzheimer's disease, but their role in disease was unclear.

Saido and colleagues studied a 43 amino acid-long fragment called Aβ43 because other groups have shown that it can form aggregates as readily as Aβ42 (Fig. 1). The researchers generated mice that have a mutation in the presenilin-1 gene that contributes to the cleavage of APP, and showed that it led to increased formation of Aβ43 in cell culture experiments. 

The research team then mated these presenilin-1 mutant mice to APP mutant mice, which display many symptoms of Alzheimer's disease, such as deposition of plaques in the brain and a gradual loss of memory. APP mutant mice generally exhibit plaque formation at one year of age. However, with the increase in Aβ43 caused by the presence of the presenilin-1 mutation, these so-called 'double-mutant mice' had plaques in their brain six months earlier than usual. The double-mutant mice also seemed to show at an even earlier age than APP mutant mice. Furthermore, the research team showed that Aβ43 is even more prone to aggregate and to cause neuronal damage than is Aβ42.

The findings therefore suggest that Aβ43 plays a role in accelerating Alzheimer's disease. Saido and colleagues argue that therapies that specifically prevent Aβ43 accumulation, such as by enhancing the cleavage of Aβ43 into shorter Aβ fragments, or by stimulating the immune system to clear Aβ43, could therefore be beneficial in slowing the progression of Alzheimer's disease.

“Aβ43 could also be a diagnostic marker for Alzheimer's disease,” explains Takashi Saito, the first author of the study. “We would now like to develop it along these lines.”

Explore further: Overlooked peptide reveals clues to causes of Alzheimer's disease

More information: Saito, T., et al. Potent amyloidogenicity and pathogenicity of Aβ43. Nature Neuroscience 14, 1023–1032 (2011)

Related Stories

Overlooked peptide reveals clues to causes of Alzheimer's disease

July 3, 2011
Researchers at the RIKEN Brain Science Institute (BSI) and their collaborators have shed light on the function of a little-studied amyloid peptide in promoting Alzheimer's disease (AD). Their surprising findings reveal that ...

Potential new drug candidate found for Alzheimer's disease

May 31, 2011
Researchers at the University of California, San Diego, the Medical University of South Carolina and American Life Science Pharmaceuticals of San Diego have demonstrated that oral administration of a cysteine protease inhibitor, ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.