Study shows promising multiple sclerosis treatment targets immune cells to increase neuroprotection

December 6, 2011

Laquinimod is an orally available synthetic compound that has been successfully evaluated in phase II/III clinical studies for the treatment of relapsing-remitting multiple sclerosis (RRMS). The mechanism of action of laquinimod has not been fully elucidated, but a study published in the January 2012 issue of The American Journal of Pathology suggests that laquinimod triggers immune cells within the central nervous system to produce and release brain-derived neurotrophic factor (BDNF), contributing to the repair or survival of neurons and thus limiting brain damage.

"Our data are indicative of a direct and sustained effect of laquinimod on the up-regulation of bioactive BDNF in patients with RRMS. Additionally, we demonstrate that laquinimod targets monocytes and skews the phagocyte population towards a regulatory phenotype, which in turn mediates immune modulation in vivo," explained Jan Thöne, MD, of the Department of Neurology at St. Josef-Hospital Bochum and Ruhr-University Bochum, Germany.

Neurotrophins, such as BDNF, are essential for the development and maintenance of and axons in the . Although BDNF is mainly produced by neurons, several types of immune cells also secrete BDNF, suggesting a role in neuroprotection.

To elucidate the mechanism of action of laquinimod, and to explore its potential neuroprotective capacity, the researchers evaluated levels of BDNF in the serum of RRMS patients treated with laquinimod in phase II clinical trials. A significant and robust BDNF increase occurred in 76% of the laquinimod-treated patients, with up to an 11-fold increase in BDNF serum levels observed in individual patients. BDNF elevation in individual patients was independent of relapse rate, and there was no correlation between BDNF levels and age, gender, or baseline disability. Yet, the source of serum BDNF subsequent to treatment remained questionable.

Experiments with animal models corroborated the findings in human patients. Experimental autoimmune encephalomyelitis (EAE; a model of MS) was induced in mice with a conditional BDNF deficiency in (LLF mice) and in wild-type (WT) control mice. Treatment with laquinimod resulted in a significant reduction in EAE incidence and disease severity in the WT mice. The effect of laquinimod was significantly reduced in the LLF-mice.

Further studies showed that WT mice treated with a suboptimal dose of laquinimod demonstrated a significant reduction in the inflammatory area and level of demyelination. These mice also displayed a reduction of macrophage infiltration and a significant preservation of axonal densities in comparison with laquinimod-treated LLF mice and controls. The data suggest a BDNF-dependent mechanism of action for laquinimod in autoimmune demyelination.

To investigate whether laquinimod-treated monocytes mediate immune modulation in vivo, laquinimod-stimulated monocytes were injected into WT mice at an early EAE disease stage. The mice showed less severe disease course than controls. Transfer of laquinimod-treated cells derived from LLF mice into WT mice with ongoing EAE did not influence disease course. The cells also secrete significantly less IL-10, an immunomodulatory cytokine that is associated with the generation of regulatory monocytes.

"Consistent with immunomodulatory properties, laquinimod skewed monocytes towards a regulatory phenotype and also acted via modulation of BDNF, which may contribute to neuroprotection in MS patients," said Dr. Thöne. "To date, selective targeting of has not been described for any other MS pipeline drug, highlighting an innovative mechanism of action of laquinimod."

Explore further: Oral drug for MS significantly reduces disease activity and slows disability

More information: The article is "Modulation of Autoimmune Demyelination by Laquinimod via Induction of Brain Derived Neurotrophic Factor," by J. Thöne, G. Ellrichmann, S. Seubert, I. Peruga, D-H. Lee, R. Conrad, L. Hayardeny, G. Comi, S. Wiese, R.A. Linker, R. Gold (doi: 10.1016/j.ajpath.2011.09.037). It will appear in The American Journal of Pathology, Volume 10, Issue 1 (January 2012)

Related Stories

Oral drug for MS significantly reduces disease activity and slows disability

April 11, 2011
The drug laquinimod reduced the number of relapses for people with multiple sclerosis (MS), in a large, long-term Phase III clinical study that will be presented as late-breaking research at the 63rd Annual Meeting of the ...

Ketamine helps see how the brain works in clinical depression

June 16, 2011
(Medical Xpress) -- In a new study published in Nature, Lisa Monteggia from the University of Texas Southwestern Medical Center looks at how the drug ketamine, typically used as an anesthetic or a popular recreational drug ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.