Changes in the path of brain development make human brains unique

December 6, 2011

How the human brain and human cognitive abilities evolved in less than six million years has long puzzled scientists. A new study conducted by scientists in China and Germany, and published December 6 in the online, open-access journal PLoS Biology, now provides a possible explanation by showing that activity levels of genes in the human brain during development changed substantially compared to chimpanzees and macaques. What's more, these changes might be caused by a handful of key regulatory molecules called microRNAs.

The authors studied in human, chimpanzee and macaque brains across their lifetimes. Starting from newborns, they investigated two ; the cerebellum, which is responsible for motor activity, and the prefrontal cortex, which has roles in more complex behavior such as social interactions or abstract thinking. They first studied the simple gene activity differences between species that are seen at all ages. Although many genes show such simple differences, there was no disparity in numbers of these differences between the human and the chimpanzee . Moreover, most of these differences were observed in both of the brain regions studied, and the genes involved are not thought to be specifically involved in . In the opinion of Mehmet Somel, the lead author of the study, these differences represent evolutionary "white noise" and have little importance for human brain evolution.

The authors then looked for changes in gene activity during development, comparing the activity of genes in newborns and adults. In general, brain developmental patterns tend to be quite similar in humans, other , and even mice. Nevertheless, the authors found that for hundreds of genes, humans display unique developmental patterns, with profiles that were different in shape and/or timing from those found in chimpanzees and macaques. Such human-specific developmental gene were particularly widespread in the prefrontal cortex, where genes showing human-specific changes outnumbered genes showing chimpanzee-specific changes by four-fold. Developmental patterns in the cerebellum, by contrast, were much less human-specific. Furthermore, many genes displaying these human-specific patterns in the prefrontal cortex were known to have specific neural functions, implying roles in human cognitive development.

Looking for possible causes of this widespread developmental remodeling in the human prefrontal cortex, the authors stumbled upon an unexpected signal. Developmental patterns of genes that encode microRNAs (tiny but powerful regulators that target many other genes and processes) showed even greater excess of human-specific changes in the than did comparable developmental patterns in ordinary genes. Several of these changes in microRNA activity could be directly linked to human-specific changes in activity of their target genes. Since each microRNA may regulate the activity of hundreds of other genes, this finding provides a possible explanation to how hundreds of genes changed their activity patterns (in a coordinated way) during human brain development.

This result further implies that the evolution of human cognitive abilities might be traced back to a small number of mutations in key developmental regulators. Philipp Khaitovich, the senior author of the study, suggests that "identifying the exact genetic changes that made us think and act like humans might be easier than we previously imagined". This said, it is likely to require much more work with a focus on the dynamics of brain development and wider use of transgenic mice, and even primate models.

Further to this, the authors point out that identification of the key human-specific DNA mutations could help us to determine how close the Neanderthals' cognitive abilities were to ours. "If Neanderthals' brain development was similar to that of and , it would be no wonder that they became extinct when confronted by Modern Humans," says Mehmet Somel.

Explore further: Young human-specific genes correlated with human brain evolution

More information: Somel M, Liu X, Tang L, Yan Z, Hu H, et al. (2011) MicroRNA-Driven Developmental Remodeling in the Brain Distinguishes Humans from Other Primates. PLoS Biol 9(12): e1001214. doi:10.1371/journal.pbio.1001214

Related Stories

Young human-specific genes correlated with human brain evolution

October 18, 2011
Young genes that appeared since the primate branch split from other mammal species are expressed in unique structures of the developing human brain, a new analysis finds.

Recommended for you

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.