'Runaway' development implicated in loss of function of the aging brain

July 19, 2010

The brain undergoes rapid growth and development in the early years of life and then degenerates as we progress into old age, yet little is known about the biological processes that distinguish brain development and aging. In a report published online today in Genome Research, researchers have identified a gene regulatory link between changes in the young and aging brain, describing "runaway" development as a potentially significant factor in age-related loss of function.

The brain grows and changes dramatically during the early years of life, with some developmental processes extending well into adulthood. In later years, the brain undergoes destructive changes, such as a drop in brain volume, synapse loss, and . While and aging are areas of intense research, they are traditionally studied separately, and little is known about the boundaries between the two processes.

Underlying brain development is the complex and coordinated process of . "In development, many genes are turned on and off by regulators, such as and microRNAs." said Mehmet Somel, postdoctoral researcher at the Shanghai Institutes for Biological Sciences. "The question is, do all of these regulatory processes cease once adulthood is reached, or are they still active in aging?"

Somel and an international team of researchers addressed this question by investigating (mRNA), microRNA, and changes in the of humans and rhesus macaque monkeys over the life span of each species. The prefrontal cortex is believed to be involved in functions such as complex behavior, personality, and decision-making.

The group found that distinct patterns of gene regulation in the prefrontal cortex do not stop at maturity, instead persisting into old age, a phenomenon that was observed for many different functional processes. One particularly striking example was the down-regulation of genes related to neuronal function.

Previous work has shown that neuronal genes gradually lose activity with age, attributed to an accumulation of damage in neuronal cells over a lifetime. Somel and colleagues have now shown that this process begins as early as three to four years of age, suggesting that these changes may be normal developmental regulation that continues long into old age. While this regulation is likely to be beneficial during development, at old age continuation of the gene regulation, or "runaway" development, might be detrimental.

Interestingly, they found the runaway neuronal development to be conserved in macaques, but it occurs an accelerated rate. Because the regulatory processes progress much faster, the authors suggest that this could be a significant contributor toward limiting the life span of macaques to only about one-third that of humans.

The authors caution that aging is a very complex process stemming from many contributing factors, but explain that their work suggests runaway development may be a significant contributor to age-related decline.

Why has evolution not eliminated such a potentially harmful process? Philipp Khaitovich of the Shanghai Institutes for Biological Sciences and senior author of the study explained that detrimental effects experienced during old age could spread throughout and fix within populations, especially when those effects are beneficial early in life.

"Evolutionarily, species are optimized to reproduce and ensure survival of the next generation, not to live as long as possible as individuals," said Khaitovich. "In fact, long lifespan precludes rapid genetic adaptations to changing environment."

Khaitovich added that as they now begin to understand the biological consequences of this evolutionary feature, researchers may find ways to shift the balance from early reproduction to individual longevity and enhanced health at old age.

More information: The manuscript will be published online ahead of print on July 20, 2010. Its full citation is as follows: Somel M, Guo S, Fu N, Yan Z, Yang Hu H, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res doi:10.1101/gr.106849.110

Related Stories

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.