Understanding the structure of the TAL effector may be key for targeted gene correction

January 5, 2012

Researchers at Fred Hutchinson Cancer Research Center have solved the three-dimensional structure of a newly discovered type of gene-targeting protein that has shown to be useful as a DNA-targeting molecule for gene correction, gene therapy and gene modification. The findings are published online in Science Express on Jan. 5.

Using a unique form of computational and X-ray crystallographic analyses, a team of researchers led by Barry L. Stoddard, Ph.D., a member of the Basic Sciences Division at the Hutchinson Center, has determined the structure of a called a "TAL effector," which stands for "transcription-activator-like effector."

"These proteins have a LEGO-like, modular architecture that allows them to easily be reshuffled and engineered for DNA targeting," Stoddard said. "The upcoming years will see an explosion in the development and use of TAL effectors – and more complicated that are built around TAL structures – for targeted gene modification, genetic engineering and corrective ."

TAL proteins exist only in Xanthomonas, a type of gram-negative bacteria that can infect soybeans, tomatoes, peppers, rice and citrus plants, among other species. Although in nature bacteria use these proteins to target specific sites in plant DNA, they have the potential to be used in a clinical setting to help humans, Stoddard said.

"In biotechnology and medicine TAL effectors can be used by scientists to seek out and bind to DNA targets in any organism of choice, including genes in humans that contain disease-causing mutations that we might want to correct," Stoddard said, referring to a field known as "targeted gene correction," which requires the development of molecules that can be delivered directly to a single DNA site. "TAL effectors have this unique capability and can be harnessed for such uses," he said.

Since their discovery, TAL effectors have been intensely studied for gene modification applications and have been commercialized by several companies around the world. "However, until now, the lack of structure has greatly impeded the further development and improvement of TAL effectors for genetic engineering and correction," Stoddard said.

Solving the structure of the TAL effector protein allows scientists to see exactly how the protein binds to its DNA target and exactly what types of contacts it makes to the DNA in order to recognize and "read" each base in the DNA sequence. "By determining the structure, it is now possible to engineer the protein to work more effectively in a variety of biotech or medical applications, either by changing its DNA-targeting specificity, making the protein more stable or longer lived in cells, or by understanding how to attach additional protein modules to it that can drive desired changes in the DNA target," Stoddard said.

The research was conducted in collaboration with computational biologist Philip Bradley, Ph.D., an assistant member of the Hutchinson Center's Public Health Sciences Division, who specializes in the computer modeling of proteins; Amanda Nga-Sze Mak, Ph.D., a postdoctoral fellow in Stoddard's lab; Adam Bogdanove, Ph.D., a professor of plant pathology and microbiology at Iowa State University, who discovered many of the properties of the TAL proteins; and Raul Cernadas, Ph.D., a postdoctoral research associate in Bogdanove's lab.

Explore further: Protein associated with childhood cancer alters the structure of DNA, leading to cancer

More information: "The Crystal Structure of TAL Effector PthXo1 Bound to its DNA Target", Science Express, AOP (2012).

Related Stories

Protein associated with childhood cancer alters the structure of DNA, leading to cancer

November 18, 2011
UNC scientists have demonstrated for the first time how a critical gene associated with a type of childhood cancer alters the way DNA is packaged in cells and leads to cancer. Their laboratory discovery could result in the ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 06, 2012
These are really incredible. You can engineer them to target whatever gene you want to modify, and they can be used in any transgenic organism. Just get these to express in the germline (microinject animals or electroporate cell culture) along with a repair template that contains your modified form of the gene. Screen/select for modified progeny and you're golden! Like zinc finger endonucleases except these actually work (thanks nature).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.