Effects of a concussion may last longer than symptoms, study shows

February 29, 2012, University of Kentucky
Director of the UK Concussion Assessment Research Lab Scott Livingston (bottom left) shows the results of MEP testing to UK men's soccer player Marco Bordon. Credit: University of Kentucky Public Relations

A study recently published by the University of Kentucky's Scott Livingston shows that physiological problems stemming from a concussion may continue to present in the patient even after standard symptoms subside.

Currently, concussions are diagnosed and monitored through a patient's self-reported symptoms (including , or disorientation, poor concentration, and ) and through computerized neuropsychological testing programs, which measure including attention and concentration, cognitive processing, , and . Post-concussion abnormalities in either of these markers typically return to a normal level within five to 10 days following the injury.

Conducted while he was a at the University of Virginia, Livingston's study was just published in the February 2012 issue of the Journal of Clinical Neurophysiology. The study used motor-evoked potentials (MEPs) — an electrophysiological measurement that can provide hard evidence for changes in brain function — to determine if any physiological abnormalities followed a similar recovery pattern to self-reported symptoms and .

During an MEP test, subjects have electrodes placed on a limb – such as the hand or foot. A magnetic stimulating device is placed over the head, and they receive a brief pulse of magnetic stimulation to the brain. The "reaction time" — the amount of time it takes for the subject's limb to receive the response from the brain after the stimulation — is recorded.

Livingston's study enrolled 18 collegiate athletes — nine who had been concussed within the previous 24 hours, and nine who had not experienced a . Each concussed subject was matched with a non-concussed subject using age, gender, sport, position played, prior concussion history, and history of learning disability or attention deficit-hyperactivity disorder as inclusion criteria.

Subjects were evaluated for evidence of concussion based on self-reported symptoms, computerized neurocognitive test performance, and MEPs for a period of 10 days. Post-concussion symptoms were more frequent and greater in severity in the immediate timeframe after the injury (24-72 hours) and decreased in the following days. Some subjects reported no symptoms by day 10, though others did not have complete symptoms resolution by that time. Neurocognitive deficits followed a similar pattern, proving greater just after the injury and returning to normal (or closer to normal) by day 10.

MEPs, however, showed delays in response time and smaller MEP size which continued up to day 10, with these physiological changes actually increasing as the concussed athletes' symptoms decreased and cognitive functioning improved.

The University of Kentucky's Scott Livingston discusses preseason baseline testing for concussions in athletes. A recently published study performed by Livingston while he was at the University of Virginia used motor-evoked potential testing to show evidence that the physiological effects of a concussion may last longer than its symptoms. Livingston's research lab at UK recently began a new program to study motor-evoked potentials in athletes pre- and post-concussion. At UK, all athletes who participate in a contact sport — including football, soccer, volleyball, diving, gymnastics, and basketball — are assessed preseason using MEP and neurocognitive testing to estbalish a baseline measure for each athlete. If an athlete receives a concussion, he or she will come back to the lab as soon as possible after the injury for follow-up testing. This approach allows researchers to get a clearer idea of the extent of an athlete's injury. Credit: University of Kentucky Public Relations

Livingston, director of the UK Concussion Assessment Research Lab and assistant professor in the Department of Rehabilitation Sciences, says these findings are significant for both athletes and sports medicine clinicians.

"Further investigation of MEPs in concussed athletes is needed, especially to assess how long the disturbances in physiological functioning continue after those initial ten days post-injury," Livingston said. "But in the meantime, sports medicine personnel caring for concussed athletes should be cautious about relying solely on self-reported symptoms and neurocognitive test performances when making return-to-play decisions."

Livingston's research lab recently began a new program to further study MEPs in athletes pre- and post-concussion. At UK, all athletes who participate in a contact sport — including football, soccer, volleyball, diving, gymnastics, and basketball — are assessed preseason using MEP and neurocognitive testing to establish a baseline measure for each athlete.

If an athlete receives a concussion, he or she will come back to the lab as soon as possible after the injury for follow-up testing. This approach allows researchers to get a clearer idea of the extent of an athlete's injury, Livingston says.

Neurocognitive tests, such as the Immediate Post-Concussion Assessment and Testing (ImPACT)™, are a valuable component of concussion management. While major professional sports organizations like the NFL and NHL, as well as hundreds of colleges, universities, and high schools across the United States follow this standard, UK Athletics did not have a formal, standardized neurocognitive testing protocol in place until last year. The addition of the MEP assessment in the preseason testing and post-concussion management are unique — UK is the first and only collegiate athletics program to implement a baseline physiologic measure of brain function.

"No other college of university in the country is currently assessing physiologic brain responses and using this information to determine the extent of the functional brain injury," Livingston said. "This type of information enables us to closely track recovery, which may not correspond to the decrease in concussion or recovery of memory and other cognitive functions."

Explore further: Does baseline concussion testing really reduce risks to athletes?

Related Stories

Does baseline concussion testing really reduce risks to athletes?

June 1, 2011
Baseline concussion tests given to hundreds of thousands of athletes might, paradoxically, increase risks in some cases, according to a Loyola University Health System researcher.

Study flags over-reliance on computer tests in return-to-plan decisions after concussion

February 2, 2012
A new study by researchers at Indiana University-Purdue University Columbus and Pace University is critical of the widespread use of computerized neuropsychological tests (CNT) in decisions regarding when athletes can return ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.