Epigenetic culprit in Alzheimer's memory decline

February 29, 2012
In a mouse model of Alzheimer's disease (right), HDAC2 levels in the hippocampus are higher than in the normal mouse hippocampus (left). Credit: Dr. Li-Huei Tsai, Massachusetts Institute of Technology

In a mouse model of Alzheimer's disease, memory problems stem from an overactive enzyme that shuts off genes related to neuron communication, a new study says.

When researchers genetically blocked the enzyme, called HDAC2, they 'reawakened' some of the and restored the animals' cognitive function. The results, published February 29, 2012, in the journal Nature, suggest that drugs that inhibit this particular enzyme would make good treatments for some of the most devastating effects of the incurable neurodegenerative disease.

"It's going to be very important to develop selective against HDAC2," says Howard Hughes Medical Institute investigator Li-Huei Tsai, whose team at the Massachusetts Institute of Technology performed the experiments. "If we could delay the by a certain period of time, even six months or a year, that would be very significant."

In every cell, DNA wraps itself around proteins called histones. Chemical groups such as methyl and acetyl can bind to histones and affect DNA expression. HDAC2 is a histone deacetylase, an enzyme that removes acetyl groups from the histone, effectively turning off nearby genes.

In 2007, Tsai's group reported in Nature that this so-called epigenetic change can contribute to cognitive decline. They used a strain of developed in her lab called CK-p25, which shows a profound loss of neurons and , the junctions between neurons. The animals also carry the amyloid-beta plaques thought to cause Alzheimer's disease and show impaired . When Tsai's team gave the mice drugs that block all HDACs, the animals sprouted more synapses and showed better memory function.

There are 19 known HDACs. In 2009, the researchers found that one of these, HDAC2, can cause a loss of synapses and in normal mice.

The new study pulls from both of these previous findings, investigating HDAC2's affect on CK-p25 mice.

The researchers showed that the mutant animals have an elevated level of HDAC2 in two regions known to be affected in neurodegenerative disease: the hippocampus, important for learning and memory, and part of the temporal lobe called the entorhinal cortex. In these regions, the researchers also found that HDAC2 binds to a host of memory genes and dampens their expression.

Tsai's team then used a technique called RNA interference to silence the expression of HDAC2 in neurons in the hippocampus. Four weeks later, they found a dramatic increase in synaptic density. What's more, when given two different memory tests, the treated animals were indistinguishable from normal controls.

Blocking HDAC2 expression did not change the number of dying neurons. Still, the findings suggest that can be improved even in later stages of the disease, Tsai says.

"The neurons that are still alive are essentially zombies: they're not really functioning properly because of the epigenetic blockade," Tsai says. "What we're showing is that, if we can get some of those neurons to wake up, we can get cognitive function to recover to a certain extent."

Using hippocampal neurons grown in culture, Tsai also uncovered a potential mechanism that raises the level of HDAC2 in the first place. She showed that amyloid beta and oxidative stress—both risk factors for Alzheimer's disease—can activate a protein called the glucocorticoid receptor 1. This receptor, in turn, can switch on the runaway expression of HDAC2.

"The striking thing is that amyloid beta has a very, very acute effect in elevating HDAC2 expression, but then the consequences can be very long term," Tsai says. This mechanism could explain why clinical trials of drugs that clear out amyloid beta in people with Alzheimer's haven't worked very well, she says.

Finally, Tsai's team looked at postmortem brain tissue from people who died of Alzheimer's disease. These samples, like those in mice, had elevated levels of HDAC2 in the hippocampus and entorhinal cortex.

The clinical applications of this work are promising, Tsai says, but it's important not to oversell the findings. "While all the data look very promising in animal models, human studies are a completely different ball game," she says. "We need to do clinical trials to see whether this concept holds up."

Explore further: Scientists discover new mechanism that may be important for learning and memory

More information: Graff J et al. "An epigenetic blockade of cognitive functions in the neurodegenerating brain." Nature, February 29, 2012.

Related Stories

Scientists discover new mechanism that may be important for learning and memory

July 14, 2011
(Medical Xpress) -- New findings in mice suggest that the timing when the neurotransmitter acetylcholine is released in the brain’s hippocampus may play a key role in regulating the strength of nerve cell connections, ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.