Scientists discover new mechanism that may be important for learning and memory

July 14, 2011

(Medical Xpress) -- New findings in mice suggest that the timing when the neurotransmitter acetylcholine is released in the brain’s hippocampus may play a key role in regulating the strength of nerve cell connections, called synapses. Understanding the complex nature of neuronal signaling at synapses could lead to better understanding of learning and memory, and novel treatments for relevant disorders, such as Alzheimer’s disease and schizophrenia.

Neurons in the hippocampus, one of the parts of the brain that is thought to have a critical function in learning and , communicate with each other at synapses by releasing various neurotransmitters, including acetylcholine and glutamate, which stimulate electrical signals in the adjacent neurons.

For years, neuroscientists have been working to determine which cellular processes allow humans to learn from experience and store memories, and how these processes are compromised by conditions such as schizophrenia and Alzheimer’s disease. Now, researchers from the National Institute of Environmental Health Sciences (NIEHS), which is part of the National Institutes of Health, believe they have found one such mechanism for synchronizing changes in the strength of synapses. The results of the study will be published online July 13 in the journal Neuron.

“We’ve demonstrated that when we stimulate the release of acetylcholine at just the right time in the hippocampus, we can induce a cellular change at synapses that use glutamate,” said Jerrel Yakel, Ph.D., a senior investigator in the NIEHS Laboratory of Neurobiology and co-author of the paper.

Previous work by other researchers had established that learning and memory is mediated by the strengthening or weakening of , where electrical signals that last less than a hundredth of a second release neurotransmitters that change the electrical impulses of the connected neurons. In this study, Yakel and Zhenglin Gu, Ph.D., a research fellow in Yakel’s group and co-author of the publication, used molecular biology techniques to get some of the neurons in mouse cells to produce a special light-sensitive protein, and then used a laser to stimulate these neurons to release acetylcholine.

“A change of even a few hundredths of a second in the timing of acetylcholine release can make a difference,” said Gu. “No one had shown this was important until now.”

Yakel said the findings are also a potentially important step in the study of disorders that affect learning and memory, such as Alzheimer’s disease and schizophrenia, where the acetylcholine system and hippocampus are known to play critical roles. For example, amyloid beta peptide is the major component of plaques that form in the brains of Alzheimer’s patients and is thought to participate in the memory loss associated with Alzheimer’s disease. In this report, Yakel and Gu expand upon earlier findings that amyloid beta peptide disrupts acetylcholine’s ability to regulate synaptic strength.

Related Stories

Recommended for you

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

hush1
not rated yet Jul 14, 2011
A change of even a few hundredths of a second in the timing of acetylcholine release can make a difference, said Gu. No one had shown this was important until now. - Zhenglin Gu

"...induce a cellular change at synapses that use glutamate,..." - Jerrel Yakel

Is there any way to ascertain to when the amount of difference (in timing) has a cognitive (macrolevel conscious) effect?

Is there self correction? Stronger synapses require less time, weaker synapses require more time? Suggesting feedback to control the potential.

Great work.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.