Molecular duo dictate weight and energy levels

February 28, 2012, Yale University
Three MCH neurons in the hypothalamus region of a mouse brain are highlighted in green. In animals, these neurons are associated with high calorie intake and lower energy levels. Yale researchers have shown how the effects of these key cells are reversed. Credit: Courtesy Yale University

Yale University researchers have discovered a key cellular mechanism that may help the brain control how much we eat, what we weigh, and how much energy we have.

The findings, published in the Feb. 28 issue of the Journal of Neuroscience, describe the regulation of a family of cells that project throughout the nervous system and originate in an area of the brain call the hypothalamus, which has been long known to control energy balances.

Scientists and pharmaceutical companies are closely investigating the role of melanin-concentrating hormone (MCH) neurons in controlling food intake and energy. Previous studies have shown that MCH makes eat more, sleep more, and have less energy. In contrast, other use the thyrotropin-releasing hormone (TRH) as a neurotransmitter, and these neurons reduce food intake and body weight, and increase physical activity.

The Yale study of brains of mice shows that the two systems appear to act in direct opposition, to help the organism keep these crucial functions in balance.

Although TRH is normally an , the Yale study shows that in mice TRH inhibits MCH cells by increasing inhibitory synaptic input. In contrast, TRH had little effect on other types of neurons also involved in .

"That these two types of neurons interact at the synaptic level gives us clues as to how the brain controls the amount of food we eat, and how much we sleep," said Anthony van den Pol, senior author and professor of neurosurgery at Yale School of Medicine.

Explore further: Modulation of inhibitory output is key function of antiobesity hormone

Related Stories

Modulation of inhibitory output is key function of antiobesity hormone

July 13, 2011
Scientists have known for some time that the hormone leptin acts in the brain to prevent obesity, but the specific underlying neurocircuitry has remained a mystery. Now, new research published by Cell Press in the July 14 ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.