Researchers find potential solution to melanoma's resistance to vemurafenib

February 28, 2012

Researchers at Moffitt Cancer Center in Tampa, Fla., and colleagues in California have found that the XL888 inhibitor can prevent resistance to the chemotherapy drug vemurafenib, commonly used for treating patients with melanoma.

Vemurafenib resistance is characterized by a diminished apoptosis (programmed cancer cell death) response. According to the researchers, the balance between apoptosis and cell survival is regulated by a family of proteins. The survival of is controlled, in part, by an anti-apoptotic protein (Mcl-1) that is regulated by a particular kind of inhibitor.

Their current findings, tested in six different models of vemurafenib resistance and in both test tube studies and in melanoma patients, demonstrated an induced apoptosis response and when the XL888 inhibitor restored the effectiveness of vemurafenib.

The study appeared in a recent issue of , a publication of the American Association for Cancer Research.

"The impressive clinical response of melanoma patients to vemurafenib has been limited by , a considerable challenge for which no management strategies previously existed," said study co-author Keiran S. M. Smalley, Ph.D., of Moffitt's departments of Molecular Oncology and Cutaneous Oncology. "However, we have demonstrated for the first time that the heat shock protein-90 () inhibitor XL888 overcomes resistance through a number of mechanisms."

The diversity of resistance mechanism has been expected to complicate the design of future clinical trials to prevent or treat resistance to inhibitors such as vemurafenib.

"That expectation led us to hypothesize that inhibitor resistance might best be managed through broadly targeted strategies that inhibit multiple pathways simultaneously," explained Smalley.

The HSP90 family was known to maintain cancer cells by regulating , making it a good target for treatment. According to the authors, the combination of vemurafenib and XL888 overcame vemurafenib resistance by targeting HSP90 through multiple signaling pathways.

There was already evidence that HSP90 inhibitors could overcome multiple drug chemotherapy resistance mechanisms in a number of cancers, including non-small lung cancer and breast cancer. Because XL888 is a novel, orally available inhibitor of HSP90, the researchers hoped that it would arrest the cancer cell cycle in melanoma cell lines.

In their study, the inhibition of HSP90 led to the degradation of the anti-apoptopiuc Mcl-1 protein. The responses to XL888 were characterized as "highly durable with no resistant colonies emerging following four weeks of continuous drug treatment." In other studies not using XL888, resistant colonies "emerged in every case," they reported.

"We have shown for the first time that all of the signaling proteins implicated in vemurafenib resistance are 'clients' of HSP90 and that inhibition of HSP90 can restore sensitivity to vemurafenib," concluded Smalley and his colleagues. "Our study provides the rationale for the dual targeting of HSP90 with XL888 and vemurafenib in treating melanoma patients in order to limit or prevent chemotherapy resistance."

Explore further: Researchers discover why new melanoma drug stops working

Related Stories

Researchers discover why new melanoma drug stops working

November 24, 2011
(Medical Xpress) -- Research led by investigators at Memorial Sloan-Kettering Cancer Center has identified a previously unknown mechanism of resistance to the newly approved melanoma drug, vemurafenib, an oral targeted therapy ...

Study uncovers mechanism by which melanoma drug accelerates secondary skin cancers

January 18, 2012
Patients with metastatic melanoma taking the recently approved drug vemurafenib (Zelboraf) responded well to the twice daily pill, but some of them developed a different, secondary skin cancer. Now, researchers at UCLA's ...

New melanoma drug Zelboraf nearly doubles survival in majority of patients

February 22, 2012
Investigators from Vanderbilt-Ingram Cancer Center (VICC) and 12 other centers in the United States and Australia have found that a new drug for patients with metastatic melanoma nearly doubled median overall survival.

Panel of melanoma mutations opens door to new treatment possibilities

November 15, 2011
Researchers have developed a new genetic screening tool that will aid in the investigation of possible treatments for patients with melanoma and the unique genetic mutations that may accompany the disease, according to data ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.