Cancer cells send out the alarm on tumor-killing virus

March 15, 2012

Brain-tumor cells that are infected with a cancer-killing virus release a protein "alarm bell" that warns other tumor cells of the impending infection and enables them to mount a defense against the virus, according to a study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The infected release a protein called CCN1 into the narrow space between where it initiates an antiviral response. The response limits the spread of the oncolytic virus through the tumor, reducing its ability to kill cancer cells and limiting the efficacy of the therapy.

The study suggests that cells in general might use this mechanism to help control viral infections, and that blocking the response might improve oncolytic viral therapy for glioblastoma and perhaps future gene therapy treatments.

Oncolytic viruses replicate in tumor cells and kill them. They have shown promise for the treatment of glioblastoma, the most common and deadly form of brain cancer. Patients with glioblastoma survive about 15 months after diagnosis on average, so there is great need for new treatments.

The study was published in a recent issue of the journal Research.

"We found that, in the extracellular matrix, this orchestrates a striking cellular antiviral response that reduces viral replication and limits its cytolytic efficacy," says researcher and principal investigator Balveen Kaur, associate professor of Neurological Surgery at the OSUCCC – James.

"These findings are significant because they reveal a novel mechanism used by infected cells to fight viral infections and alert adjacent uninfected cells to prepare their defenses to fight off forthcoming viral attacks," Kaur says.

Kaur notes that CCN1 helps regulate cellular functions that include adhesion, migration, and proliferation, and that it is overexpressed in 68 percent of glioblastoma specimens.

Previous research led by Kaur found that oncolytic virus therapy induced the release of CCN1 into the tumor microenvironment. For this study, Kaur and her colleagues used glioma cell lines, oncolytic viruses derived from human herpesvirus type 1 (HSV-1), and glioblastoma animal models. Key findings include:

  • CNN1 expression is upregulated by the oncolytic but not by chemotherapy or radiation treatment. Thus, it may be a general response of glioma cells to viral infection.
  • In the extracellular space, CCN1 reduces viral replication and the killing of glioma cells.
  • CCN1 induces a type-I interferon antiviral response using an integrin cell-surface receptor.
"Overall, this finding reveals how extracellular signaling can contribute to viral clearance," Kaur says. "We can now utilize this knowledge to improve future viral gene therapy."

Explore further: New oncolytic virus shows improved effectiveness in preclinical testing

Related Stories

New oncolytic virus shows improved effectiveness in preclinical testing

October 27, 2011
A new fourth-generation oncolytic virus designed to both kill cancer cells and inhibit blood-vessel growth has shown greater effectiveness than earlier versions when tested in animal models of human brain cancer.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SongDog
not rated yet Mar 16, 2012
Sheesh! The paper is at
http://cancerres....22282654
Abstract is at http://www.ncbi.n...22282654

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.