Cartilage repair gel gives injuries a sporting chance

March 8, 2012, University of Sydney

A cartilage gel being developed by tissue engineers and biochemists at the University of Sydney could bring increased mobility to people living with debilitating sports injuries.

The researchers have joined forces to fast track the development of a new that can be used to repair damaged cartilage, in particular .

Work has just commenced on an injectable hybrid-hydrogel that mimics chondrocytes, the cells that are found in cartilage.

Chief investigator on the project, Associate Professor Fariba Dehghani, from the Faculty of Engineering and Information Technologies, says the team is targeting these cells because they are responsible for producing and maintaining the structure of cartilage but until now have been extremely hard to repair when damaged.

"Tissue engineering is an emerging science that consists of growing living cells into 3D scaffolds to form whole tissues capable of normal functions," says Professor Dehghani.

"We intend to generate a new family of hybrid biomaterials constructed by precisely blending natural and synthetic components.

"The novel biomaterials that we are developing will establish a foundation for manufactured prefabrication and in situ injections which will promote rapid and targeted healing to the affected region," says Professor Dehghani.

Sports injuries similar to those affecting cricketers or rugby league and soccer players for example could potentially be permanently repaired by the techniques being developed by the team, says Professor Dehghani.

Also working on the project is molecular researcher and co-Chief investigator Professor Tony Weiss from the University's School of , who says:

"When we refine it, this technology has the potential to be used to rebuild other cartilage in many places in the human body, areas that are adversely affected by ageing and disease."

"This is an extremely exciting time for scientists. Our multidisciplinary approach to research gives us the opportunity to blend the best of our skills."

"It promises more rapid advancement of our knowledge and by working together we can accelerate the development of therapies for injuries which in the past many of us have just had to live with," says Professor Weiss.

Explore further: Progress in tissue engineering to repair joint damage in osteoarthritis

Related Stories

Progress in tissue engineering to repair joint damage in osteoarthritis

June 8, 2011
Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.