Gene gives cells a 'safety belt' against genetic damage

March 22, 2012
Gene gives cells a 'safety belt' against genetic damage
CHMP4C localisation (green signal) at the site of abscission

(Medical Xpress) -- Researchers at King’s College London have identified a gene which offers cells a ‘safety belt’ against genetic damage by stopping them dividing at the wrong time.

DNA damage is a common cause of cancer and by identifying a significant element of the cell division process, the study could help identify new cancer research paths.

In a study published in Science Dr Jeremy Carlton and Dr Juan Martin-Serrano, from the Department of Infectious Diseases, found that the gene CHMP4C ensures divide at the right moment in the separation process, preventing DNA damage.

When cells separate they undergo a process known as , a mechanism which physically divides the cells. Before the process can be completed an ‘abscission checkpoint’ prevents the cells separating while chromosomes are trapped at the abscission site, rather than being fully transferred into the new cell. Chromosomes become trapped in around five per cent of divisions and this can cause DNA damage.

CHMP4C is the gene responsible for temporarily stopping the abscission process until any ‘lagging’ chromosomes have been segregated into the new cells.

The study also showed cells lacking CHMP4C undergo abscission at a much faster rate, making DNA damage accumulation more likely than when the gene is present.

It was already known that a protein called Aurora B regulates the responsible for the ‘checkpoint’ process, but which genes it targets had not been identified until now. This study shows that the CHMP4C gene is activated by Aurora B and plays an essential role in the mechanisms governing the timing of the abscission checkpoint, acting as a ‘safety belt’ against genetic damage.

Dr Martin-Serrano said: ‘This is a really exciting new discovery. By identifying the role of this gene, it sheds a light on the mechanism at the very end of the cell separation process.

‘As to cells is a major cause of cancer, understanding the process by which cells divide safely is of great importance.’

The research opens up a new avenue to study the basic mechanisms that prevent DNA damage during the last stages of cell division. Future studies will investigate whether the inactivation of CHMP4C, due to a mutation, might cause cancer. The researchers intend to study the gene’s activity in tumour cells to establish this theory.

Explore further: Crucial step in cell division discovered

More information: ESCRT-III Governs the Aurora B-Mediated Abscission Checkpoint through CHMP4C, Science (2012).

Related Stories

Crucial step in cell division discovered

December 13, 2011
(Medical Xpress) -- Cancer Research UK scientists have discovered how cells ‘pinch in’ at the middle in order to split into two new cells. Their research is published in Developmental Cell today.

Scientists discover nucleoli damage could kill cancer cells

November 8, 2011
(Medical Xpress) -- Damaging a cell’s nucleolus could destroy cancer cells by increasing levels of the most important tumour prevention protein, p53, reveals research presented at the National Cancer Research Institute ...

Match your treatment to your cancer

June 30, 2011
(Medical Xpress) -- New research has uncovered why certain cancers don’t respond to conventional chemotherapy, highlighting the need to match treatments to cancers better.

Immune cell can trigger skin cancer caused by toxins

January 9, 2012
(Medical Xpress) -- Researchers based jointly at King’s College London and the Cancer Research UK London Research Institute, together with collaborators at Yale University have found that a type of immune cell, called ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.