Scientists break through pancreas cancer treatment barrier

March 19, 2012

Pancreas cancer tumors spread quickly and are notoriously resistant to treatment, making them among the deadliest of malignancies. Their resistance to chemotherapy stems in part from a unique biological barrier the tumor builds around itself. Now scientists at Fred Hutchinson Cancer Research Center have found a way to break through that defense, and their research represents a potential breakthrough in the treatment of pancreas cancer.

In a paper to be published in the March 20 issue of Cancer Cell, senior author Sunil Hingorani, M.D., Ph.D., an associate member of the Hutchinson Center's Clinical Research and Public Health Sciences divisions, and colleagues describe the of how the tumor barrier is formed and detail a newly discovered way to break it down. Their research significantly increased the length of survival in a genetically engineered mouse model of the disease. Early clinical trials in humans are under way at a few sites in the U.S. and Europe, including Seattle Alliance, the Hutchinson Center's patient treatment arm.

Using a mouse model developed by Hingorani, the scientists combined gemcitabine, the current standard chemotherapy used to treat pancreatic ductal adenocarcinomas, with an enzyme called PEGPH20. When they infused the combination into specially engineered mice whose pancreas tumors mimic those of human pancreas cancer, the combination broke down the matrix barrier within the tumors and allowed the chemotherapy to permeate freely and spread throughout the . The result was a 70 percent increase in survival time of the mice after the start of treatment, from 55 to 92 days.

"This represents the largest survival increase we've seen in any of the studies done in a preclinical model, and it rivals the very best results reported in humans," Hingorani said.

Unlike most solid tumors, pancreas tumors use a two-pronged defense to keep small molecules, such as those contained in chemotherapy, from entering: a vastly reduced blood supply and the creation of a strong fibroinflammatory response. The latter includes the production of fibroblasts, immune cells and endothelial cells that become embedded within a dense and complex extracellular matrix throughout the tumor. One major component of this matrix is a substance called hyaluronan, or hyaluronic acid (HA). HA is a glycosaminoglycan, a complex sugar that occurs naturally in the body and is secreted at extremely high levels by pancreas .

Hingorani and colleagues discovered that the fibroinflammatory response creates unusually high interstitial fluid pressures that collapse the tumor's blood vessels. This in turn prevents chemotherapy agents from entering the tumors. The researchers found that HA is the main biological cause of the elevated pressures that leads to blood vessel collapse.

"That's the primary reason pancreas cancers are resistant to everything we've thrown at them: because none of the drugs get into the tumor. It's physics first, before we even get to the intrinsic biology," Hingorani said.

Administering the enzyme/ combination degrades HA in the tumor barrier and results in rapid reduction of the interstitial fluid pressure. This in turn opens the blood vessels and permits high concentrations of chemotherapy to reach the tumor.

"Being able to deliver the drugs effectively into the tumor resulted in improved survival as well as the realization that may be more sensitive to conventional chemotherapy than we previously thought," Hingorani said.

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States. Overall five-year survival is less than 5 percent with a median survival of four to six months.

Explore further: Gene-modified stem cells help protect bone marrow from toxic side effects of chemotherapy

More information: Details about the open clinical trial can be found here: http://clinicaltrials.gov/show/NCT01453153

Cancer Cell paper: "Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma."

Related Stories

Gene-modified stem cells help protect bone marrow from toxic side effects of chemotherapy

May 21, 2011
Although chemotherapy is used to kill cancer cells, it can also have a strong toxic effect on normal cells such as bone marrow and blood cells, often limiting the ability to use and manage the chemotherapy treatment. Researchers ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.