New research could significantly reduce the need for clinical animal testing

March 8, 2012

University of Southampton researchers are investigating innovative methods of testing drugs that will reduce the need for involving animals.

Drugs based on biological proteins can cause adverse immune reactions in humans.

Scientists from the University of Southampton will start a new study in June to develop a laboratory-based system, known as assays, which will accurately predict immune responses to these drugs. These assays would be used to pre-screen candidate drugs and reduce the need for testing on animals.

It is hoped that the assays will help avoid incidents such as the TGN1412 trials in London six years ago, which saw six healthy experience severe to a clinical that had been tested on animals with no effects.

Martin Glennie, Professor of Immunochemistry and Head of Cancer Sciences at the University, says: “Animal testing remains the industry standard for predicting patient toxicity but it can underestimate or even miss the levels of toxicity observed in the first-in-human trials, as we saw with the TGN1412 trials in 2006. Predicting toxicity using in vitro human assays would reduce the risk of incidents like this and also refine pre-clinical animal testing.”

The study is funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) under its CRACK IT scheme, a ground-breaking open innovation programme to fund projects that accelerate the application of the 3Rs.

Professor Glennie, together with Dr Tony Williams, Reader in Clinical Immunology and Allergy at the University of Southampton will work with a team of researchers, which includes Dr Mark Coles of the Centre for Immunology and Infection at the University of York, to a range of drugs called monoclonal antibodies to see if they can find a way of predicting their toxicity in patients.

It is known that most of the toxicity seen when using monoclonal antibodies comes from blood cells called lymphocytes. When these cells become activated patients feel ill, with symptoms ranging from a mild cold, to life-threatening swelling of vital organs. These activated lymphocytes make important ‘messenger’ molecules called cytokines and it is these messengers which cause the during a so-called ‘cytokine storm’.

Drug testing in animals does not always predict how a monoclonal antibody will behave in patients. Southampton scientists will develop laboratory-based tests that will reliably predict cytokine release when a monoclonal antibody is given to patients.

“Worldwide more than 30 monoclonal antibodies, such as Herceptin and Remicade, have now been approved for human use, and they are rapidly changing the way we control and treat diseases ranging from to rheumatoid arthritis,” adds Professor Glennie. “The success of this class of drugs is such that hundreds more are under development. We have a long and distinguished history of making and using in Southampton and so we feel ideally placed to undertake this important research and hopefully reduce the need for pre-clinical testing in animals.”

Explore further: Researchers’ blood cancer breakthrough

Related Stories

Researchers’ blood cancer breakthrough

August 10, 2011
Researchers at the University of Southampton have discovered clues to why many patients do not respond to a standard drug for the blood cancer lymphoma, raising hopes that more effective treatments can be designed.

Artificial liver cells win their creator prize for their potential to reduce animal experiments

February 29, 2012
Cambridge research that created liver cells from stem cells has today been recognised with a national prize by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).

Scientists developing breast cancer treatment test

January 23, 2012
University of Manchester scientists are developing a test that will help identify patients who will benefit from a new breast cancer treatment, thanks to a research grant worth almost £180,000 from Breast Cancer Campaign.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Co-infection with two common gut pathogens worsens malnutrition in mice

July 27, 2017
Two gut pathogens commonly found in malnourished children combine to worsen malnutrition and impair growth in laboratory mice, according to new research published in PLOS Pathogens.

Study sheds light on how body may detect early signs of cancer

July 26, 2017
Fresh insights into how cells detect damage to their DNA - a hallmark of cancer - could help explain how the body keeps disease in check.

How genetically engineered viruses develop into effective vaccines

July 26, 2017
Lentiviral vectors are virus particles that can be used as a vaccine to stimulate the immune system to fight against specific pathogens. The vectors are derived from HIV, rendered non-pathogenic, and then engineered to carry ...

Accounting for human immune diversity increases clinical relevance of fundamental immunological research

July 26, 2017
Mouse models have advanced our understanding of immune function and disease in many ways but they have failed to account for the natural diversity in human immune responses. As a result, insights gained in the lab may be ...

Study suggests same gut bacteria can trigger different immune responses depending on environment

July 24, 2017
(Medical Xpress)—A group of researchers affiliated with several institutions in the U.S. has found that one type of gut bacteria triggers different kinds of immune responses depending on the state of the environment they ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.