Artificial liver cells win their creator prize for their potential to reduce animal experiments

February 29, 2012
Top images diseased liver cells, bottom images healthy liver cells. Credit: Tamir-Rashid

Cambridge research that created liver cells from stem cells has today been recognised with a national prize by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).

Producing liver cells that demonstrate inherited from has earned Dr. Ludovic Vallier from the University of Cambridge a major prize from the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). These cells, known as human induced (hIPSCs), have already attracted attention for the they offer to regenerate damaged tissues and organs. But it is their potential to reduce the number of animals used for screening potential drug treatments that led to Dr. Vallier receiving the Centre’s 3Rs prize for 2011.

The prize, sponsored by GlaxoSmithKline, of a £2,000 personal award and a £18,000 research grant, is for the scientific paper published in the last three years that contributes most to the advancement of the 3Rs (Replacement, Reduction and Refinement). Dr Vallier’s winning paper was published in The Journal of Clinical Investigation in 2010. He received his prize from Professor Paul Matthews OBE of GlaxoSmithKline at the NC3Rs Annual Science Review Meeting in London on 28 February.

Human liver cells (hepatocytes) cannot be grown in the laboratory and differences between rodents and humans mean that it is rarely possible to recreate the human disease completely in mice or rats or to use cultures of rat or mouse liver cells. Dr Vallier’s team took skin cells (dermal fibroblasts) from seven patients with a variety of inherited liver diseases and three healthy individuals (the controls). They then reprogrammed cells from the skin samples back into . These stem cells were then used to generate liver cells which mimicked a broad range of liver diseases – and to create ‘healthy’ liver cells from the control group.

These hIPSC-generated liver cells can provide in vitro models for basic research and drug discovery. Their use has already reduced the use of animals needed for the production of in the laboratories that have adopted this technology. The cells could also transform the investigation of chemical/drug-induced liver injury, a major concern for the chemical and pharmaceutical industries, by reducing dependence on animal testing.

Sharmila Nebhrajani, chief executive of the Association of Medical Research Charities (AMRC) said:  “Charities invest over £1bn in health research each year, money raised by patients, their families and carers to understand the causes of disease and search for possible cures. Using 3Rs techniques, these prize winning researchers are bringing real hope to people with liver disease. What’s more – they are developing new methods for medical research which should benefit patients with all kinds of conditions.”

On presenting Dr. Vallier with his , Professor Paul Matthews, Vice-President for Imaging at GlaxoSmithKline, commented: “Ludovic Vallier’s innovative study describes the development and validation of a method to produce cells similar to those in a human liver. Such cells could replace animals for some types of early drug testing and could also help us to predict adverse clinical reactions. Using these cells for drug testing could be transformative.  Ludovic and his colleagues have well illustrated how addressing the 3Rs converges with improving the quality of science!”

Explore further: Creating precursor liver cells from stem cells

Related Stories

Creating precursor liver cells from stem cells

June 8, 2011
(Medical Xpress) -- Scientists from the Departments of Biology & Biochemistry and Pharmacy & Pharmacology have discovered a new way to create precursor liver cells from stem cells, with the potential to impact on the testing ...

Adult stem cells take root in livers and repair damage

May 11, 2011
Johns Hopkins researchers have demonstrated that human liver cells derived from adult cells coaxed into an embryonic state can engraft and begin regenerating liver tissue in mice with chronic liver damage.

Mice with human livers make pharmaceutical testing more accurate

July 12, 2011
(Medical Xpress) -- In a new report published in the Proceedings of the National Academy of Sciences, a team of researchers reveal a new miniature artificial human liver that can be implanted into mice to better enable testing ...

Liver-cell transplants show promise in reversing genetic disease affecting liver, lungs

April 22, 2011
Transplanting cells from healthy adult livers may work in treating a genetic liver-lung disorder that affects millions of people worldwide, according to an animal study in the April 18 online edition of the Journal of Clinical ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.