Stem cell study aids quest for motor neurone disease therapies

March 26, 2012, University of Edinburgh

A breakthrough using cutting-edge stem cell research could speed up the discovery of new treatments for motor neurone disease (MND).

The international research team has created motor neurones using from a patient with an inherited form of MND.

The study discovered that abnormalities of a called TDP-43, implicated in more than 90 per cent of cases of MND, resulted in the death of motor neurone cells.

This is the first time that scientists have been able to see the direct effect of abnormal TDP-43 on human .

The study, led by the University of Edinburgh's Euan MacDonald Centre for Research, was carried out in partnership with King's College London, Colombia University, New York and the University of San Francisco.

MND is a devastating, untreatable and ultimately fatal condition that results from progressive loss of the – motor neurones – that control movement, speech and breathing.

Professor Siddharthan Chandran, of the University of Edinburgh, said: "Using patient stem cells to model MND in a dish offers untold possibilities for how we study the cause of this terrible disease as well as accelerating drug discovery by providing a cost-effective way to test many thousands of potential treatments."

The study, funded by the MND Association, is published in the journal Proceedings of the National Academy of Sciences.

Dr Brian Dickie, Director of Research and Development for the MND Association, said: "This advance is a significant milestone on the road to developing a laboratory model of MND that faithfully reflects the cellular events happening in the patient.

"It is also a testament to the importance of international collaboration, with eminent scientists from leading institutions around the world focused on the common goal of understanding and, ultimately, defeating this devastating disease".

Related Stories

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.