Team gains understanding of white matter in infants receiving heart surgery

March 8, 2012

A collaborative team of researchers at Children's National Medical Center are making progress in understanding how to protect infants needing cardiac surgery from white matter injury, which impacts the nervous system. The synergistic team from the Children's National Heart Institute and Center for Neuroscience Research at Children's National Medical Center was led by Nobuyuki Ishibashi, MD, Joseph Scafidi, DO, Richard Jonas, MD, and Vittorio Gallo, PhD. The study, published online in the January edition of Circulation, identifies the stages of white matter development, as well as the areas and cells of the brain that are impacted by the amount of oxygen and any inflammation in infants with complex cardiac issues that affect brain oxygenation and cause swelling.

The most common neurological deficits seen in children with CHD requiring cardiac surgery are fine and gross motor deficits, which are consistent with injury. The study, using a porcine cardiopulmonary bypass (CPB) model, monitored how the regions of white matter responded to CPB at 1, 3, and 7 weeks of age. In some groups, observation involved CPB with (hypoxia) and inflammation. The results found that white matter injury was dependent on the area's stage of maturity. Additionally where there was hypoxia and inflammation, the team saw a halt in the progression of white matter development, or oligodendroctye cell maturation and lineage, which is known to lead to neurological deficits. Four weeks after surgery with CPB that induced hypoxia and inflammation, the team determined that white matter cells were no longer growing and maturing, a finding consistent with the neurological deficits in complex patients, who are at higher risk of and inflammation that often occur after frequent hypoxia.

"Being able to identify the stage in which certain cells are more vulnerable to disruptions brings us much closer to understanding the mechanisms of white matter injury and could eventually help us create strategies and treatment methods to protect those cells in young patients who will need to undergo cardiopulmonary bypass," stated Nobuyuki Ishibashi, MD, lead author of the study and Laboratory Director of Cardiac Surgery. "This study also provides evidence that CPB surgery must be managed precisely to avoid inducing further hypoxia and inflammation in these already fragile patients."

Oligodendrocyte cells are the type of brain cells that make up white matter and serve as the primary messaging "network" that conducts signals rapidly between gray matter areas. Without it, the brain does not function properly. Myelination, or growth of white matter, in humans begins in utero at around 5 months of gestation and continues throughout the first two decades of life. This process involves the maturation of oligodendrocyte cells through different stages; if there is a disruption, for example from a lack of oxygen or inflammation, these cells and the subsequent stages, or lineage, can't develop the way that they should, resulting in neurological deficits.

"Interestingly, the white matter response we saw in the group that experienced and inflammation is very similar to what you see in patients with complex congenital ," stated Richard Jonas, MD, Chief of . "If we can start to understand the mechanics of white matter development and how a lack of oxygen and inflammation affects the brain, we will be able to contribute to the treatment strategies for patients with congenital heart disease." Congenital heart disease is the leading birth defect, affecting almost one in every 100 infants each year. For successful white matter development in congenital heart disease patients, it is imperative to understand how CHD and its treatments affect the growth and repair of white matter.

Director of the Center for Neuroscience Research, Vittorio Gallo, PhD, commented "This study provides us with further evidence of the critical time windows that exist in white matter development and the importance of understanding the mechanisms of white matter development so that we might possibly ease white matter damage in patients."

Myelination, white matter growth and repair, and the study of complex mechanisms of prenatal brain development are a key focus of the Center for Neuroscience Research at Children's National, which also houses the White Matter Diseases Program, one of the largest clinical programs in the country for treating children with disorders that cause the brain's white matter to degenerate. Congenital heart disease and other cardiac conditions are the main priority of the Children's National Heart Institute, an international leader in providing comprehensive care for infants, children, and adults.

Explore further: Researchers make breakthrough in understanding white matter development

More information: www.childrensnational.org/rese … ios/cnr/Gallo_v.aspx

Related Stories

Researchers make breakthrough in understanding white matter development

September 29, 2011
Through the identification of a gene's impact on a signaling pathway, scientists at Children's National Medical Center continue to make progress in understanding the mechanics of a key brain developmental process: growth ...

Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

June 27, 2011
(Medical Xpress) -- In a new study published in Nature Neuroscience, a team of researchers revealed the discovery of a key protein necessary for nerve repair and could lead to the development of a treatment for brain injuries ...

Variation in brain development seen in infants with autism

February 22, 2012
Patterns of brain development in the first two years of life are distinct in children who are later diagnosed with autism spectrum disorders (ASDs), according to researchers in a network funded by the National Institutes ...

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.