Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

June 27, 2011 by Deborah Braconnier report

(Medical Xpress) -- In a new study published in Nature Neuroscience, a team of researchers revealed the discovery of a key protein necessary for nerve repair and could lead to the development of a treatment for brain injuries due to a lack of oxygen, such a cerebral palsy, as well as multiple sclerosis, an autoimmune disease that affects adults all over the world.

David Rowitch from the University of California and his team studied the brains of young infants who had passed away due to an insufficient amount of oxygen to the brain. They discovered a gene known as AXIN2 is expressed in premature infants with white matter brain injuries. White matter brain injuries in infants occur when birth takes place prematurely and before is complete. The creates a disruption in the ability to create myelin, or the protective coating found on nerves. Without this myelin, the die and can lead to cerebral palsy.

The researchers have also discovered this gene in patients with multiple sclerosis. In multiple sclerosis, the immune system, which normally fights off infections, turns on the body and attacks the myelin, leaving the nerves without the protective coating. They determined this AXIN2 protein is involved in certain cellular processes, with one being development.

Working with mice that had nerve damage in the of the brain, the researchers injected a drug that stops the destruction of the AXIN2 protein into the areas of the mice brains that were myelin deficient. Once injected, these mice were able to regrow the myelin and repair the damage.

Although this arrested development of myelin producing cells has been seen in mice and patients with multiple sclerosis, there is no proof of this same condition in the brains of premature infants. While this discovery shows promise for a pharmaceutical target for re-growing myelin and repairing in patients with multiple sclerosis, it is still unclear if this will be able to help treat infant brain injuries.

More information: Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination, Nature Neuroscience (2011) doi:10.1038/nn.2855

Abstract
Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process.

Related Stories

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.