New study unravels mystery of a DNA repair process

March 14, 2012, University of Sussex
Cell damaged by UVA light, as shown by the stripe, undergoing repair by enzymes

(Medical Xpress) -- Scientists at the University of Sussex have uncovered the mechanism of a key process in DNA repair that helps prevent neurodegenerative diseases such as ataxia.

A four-year study led by Dr. Sherif El-Khamisy at the Sussex Centre for Genome Damage and Stability, has focused on the behaviour of enzymes within cells that are involved in the repair of faults in DNA - the in our cells and all other .

The most common fault to occur spontaneously in DNA is single strand breaks (DNA being composed of two twisted strands). Failure to correct these breaks has been shown to lead to neurodegenerative disorders (those that attack the nervous system).

Previous research has shown that a particular enzyme,TPD1,is critical for repairing one type of these breaks, but it was not known how this enzyme reached sites of DNA damage. Now Dr El-Khamisy and his team have identified a peptide (a small protein composed of approximately 100 ) within cells, named SUMO, which helps bring TPD1 to the lesion to repair it.

This process is particularly important in cells that experience a high level of lesions and are unable to self-replicate, such as (neurons).

Dr. El-Khamisy said: “These findings were a surprise since it was known that this enzyme was important but it was an unresolved mystery as to how it reached the site of damage to deal with this kind of break.

“We were not expecting to find that this enzyme was modified by SUMO peptides, nor were we expecting to find that this modification helps to recruit this enzyme to the site of damage.” 

He said the results of this study, published this month in Nature Communications, will enhance the assessment of disorders such as the hereditary neurological disease, ataxia. “Addressing how these fascinating enzymes work will not only determine the importance of repairing for preventing neurodegenerative disease but might also identify novel markers for improving human health and promoting a healthy elderly population.”

The next step for Dr. El-Khamisy and his team is to look at environmental factors and drugs that affect this process, such as anti-cancer agents, ultra violet light, and radiation.

Explore further: Scientists identify protein that improves DNA repair under stress

More information: ‘SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair’, by Sherif  F El-Khamisy, et al, is published on March 13 in Nature Communications. www.nature.com/ncomms/journal/ … full/ncomms1739.html

Related Stories

Scientists identify protein that improves DNA repair under stress

June 16, 2011
Cells in the human body are constantly being exposed to stress from environmental chemicals or errors in routine cellular processes. While stress can cause damage, it can also provide the stimulus for undoing the damage. ...

Molecular corkscrew

November 8, 2011
Scientists from the universities of Zurich and Duisburg-Essen have discovered a specific function of the protein p97/VCP. They demonstrate that the protein repairs DNA breaks like a corkscrew, a repair mechanism that could ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.