Bilingualism fine-tunes hearing, enhances attention

April 30, 2012, Northwestern University

A Northwestern University study that will be published in the Proceedings of the National Academy of Sciences (PNAS) provides the first biological evidence that bilinguals' rich experience with language in essence "fine-tunes" their auditory nervous system and helps them juggle linguistic input in ways that enhance attention and working memory.

Northwestern expert Viorica Marian teamed up with auditory neuroscientist Nina Kraus to investigate how bilingualism affects the brain. In particular, they looked at subcortical auditory regions that are bathed with input from cognitive . In extensive research, Kraus has already shown that lifelong music training enhances language processing, and an examination of subcortical auditory regions helped to tell that tale.

"For our first collaborative study, we asked if bilingualism could also promote experience-dependent changes in the fundamental encoding of sound in the brainstem -- an evolutionarily ancient part of the brain," said Marian, professor of communication sciences in Northwestern's School of Communication. The answer, according to their study, is a resounding yes.

The researchers found that the experience of bilingualism changes how the nervous system responds to sound. "People do and other activities to keep their minds sharp," Marian said. "But the advantages we've discovered in dual language speakers come automatically simply from knowing and using two languages. It seems that the benefits of bilingualism are particularly powerful and broad, and include attention, inhibition and encoding of sound."

Co-authored by Kraus, Marian and researchers Jennifer Krizman, Anthony Shook and Erika Skoe, "Bilingualism and the Brain: Subcortical Indices of Enhanced Executive Function" underscores the pervasive impact of bilingualism on . The article will appear in the April 30 issue of PNAS.

"Bilingualism serves as enrichment for the brain and has real consequences when it comes to executive function, specifically attention and ," said Kraus, Hugh Knowles Professor at Northwestern. In future studies, she and Marian will investigate whether these results can be achieved by learning a language later in life.

In the study, the researchers recorded the brainstem responses to complex sounds (cABR) in 23 bilingual English-and-Spanish-speaking teenagers and 25 English-only-speaking teens as they heard speech sounds in two conditions.

Under a quiet condition, the groups responded similarly. But against a backdrop of background noise, the bilingual brains were significantly better at encoding the fundamental frequency of speech sounds known to underlie pitch perception and grouping of auditory objects. This enhancement was linked with advantages in auditory attention.

"Through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound," Kraus explained.

"Bilinguals are natural jugglers," said Marian. "The bilingual juggles linguistic input and, it appears, automatically pays greater attention to relevant versus irrelevant sounds. Rather than promoting linguistic confusion, bilingualism promotes improved 'inhibitory control,' or the ability to pick out relevant speech sounds and ignore others."

The study provides for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions. "The bilingual's enhanced experience with sound results in an auditory system that is highly efficient, flexible and focused in its automatic sound processing, especially in challenging or novel listening conditions," Kraus added.

Explore further: Musical aptitude relates to reading ability

Related Stories

Musical aptitude relates to reading ability

October 17, 2011
Auditory working memory and attention, for example the ability to hear and then remember instructions while completing a task, are a necessary part of musical ability. But musical ability is also related to verbal memory ...

Musical experience offsets some aging effects

May 11, 2011
(Medical Xpress) -- A growing body of research finds musical training gives students learning advantages in the classroom. Now a Northwestern University study finds musical training can benefit Grandma, too, by offsetting ...

Study examines role of bilingualism in children's development

February 8, 2012
A new study on children who are raised bilingual examined the effects on children's development of growing up speaking two languages. The study found that different factors were responsible for the language- and non-language-related ...

Recommended for you

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Study on instinctive behaviour elucidates a synaptic mechanism for computing escape decisions

June 21, 2018
How does your brain decide what to do in a threatening situation? A new paper published in Nature describes a mechanism by which the brain classifies the level of a threat and decides when to escape.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.