New clinical study evaluates first drug to show improvement in subtype of autism

April 24, 2012

In an important test of one of the first drugs to target core symptoms of autism, researchers at Mount Sinai School of Medicine are undertaking a pilot clinical trial to evaluate insulin-like growth factor (IGF-1) in children who have SHANK3 deficiency (also known as 22q13 Deletion Syndrome or Phelan-McDermid Syndrome), a known cause of autism spectrum disorder (ASD).

This study builds on findings announced by the researchers in 2010, which showed that after two weeks of treatment with IGF-1 in a mouse model, deficits in were reversed and deficiencies in adaptation of to stimulation, a key part of , were restored.

"This clinical trial is part of a to develop medications specifically to treat the core symptoms of autism, as opposed to medications that were developed for other purposes but were found to be beneficial for autism patients as well," said Joseph Buxbaum, PhD, Director of the Seaver Autism Center at Mount Sinai. "Our study will evaluate the impact of IGF-1 vs. placebo on autism-specific impairments in socialization and associated symptoms of language and motor disability."

The seven-month study, which begins this month, will be conducted under the leadership of the Seaver Autism Center Clinical Director Alex Kolevzon, MD, and will utilize a double-blind, placebo-controlled crossover design in children ages 5 to 17 years old with SHANK3 deletions or mutations. Patients will receive three months of treatment with active medication or placebo, separated by a four-week washout period. Future trials are planned to explore the utility of IGF-1 in ASD without SHANK3 deficiency.

The primary aim of the study is to target core features of ASD, including social withdrawal and , which will be measured using both behavioral and objective assessments. If preliminary results are promising, the goal is to expand the studies into larger, multi-centered efforts to include as many children as possible affected by this disorder.

IGF-1 is a US Food and Drug Administration-approved, commercially available compound that is known to promote neuronal cell survival as well as synaptic maturation and plasticity. Side effects of IGF-1 administration include low blood sugar, liver function abnormalities, and increased cholesterol and triglyceride levels. Study subjects will undergo rigorous safety screening before they are enrolled in the trial, and will be carefully monitored every two to four weeks with safety and efficacy assessments.

"We are excited that the researchers at the Seaver Autism Center are undertaking this pilot study to evaluate a possible treatment for SHANK3 deficiency, which may also help everyone with ASD," said Geraldine Bliss, Research Support Chair of the Phelan-McDermid Foundation. "This will be the first clinical trial in Phelan-McDermid Syndrome to emerge from convincing preclinical evidence in a model system."

The cause of autism has been debated for many years. Currently the best scientific evidence indicates that genetic mutations are the most likely culprits, acting either directly or indirectly, in upwards of 80 to 90 percent of individuals with ASDs. In the past few years, gene mutations and gene copy number variations have been identified that cause approximately 15 percent of cases of ASD. However, it is thought that hundreds of genes may be involved in causing autism.

One copy of the q13 portion of chromosome 22 is either missing or otherwise mutated in SHANK3 deficiency, also known as Phelan-McDermid Syndrome or 22q13 (22q13DS). The area in question contains the gene SHANK3, and there is overwhelming evidence that it is the loss of one copy of SHANK3 that produces the neurological and behavioral aspects of the syndrome. The SHANK3 gene is key to the development of the human nervous system, and loss of SHANK3 can impair the ability of neurons to communicate with one another.

Explore further: New clinical trial to examine medication to treat social withdrawal in Fragile X and autism

Related Stories

Recommended for you

Autism biomarker seen as boon for new treatments

January 11, 2017

Researchers at the UCLA Center for Autism Research and Treatment have identified a signature brain-wave pattern for children with autism spectrum disorder related to a genetic condition known as Dup15q syndrome. The research ...

Lab confirms vitamin D link to autism traits

December 14, 2016

Researchers at The University of Queensland's Queensland Brain Institute have found a link between vitamin D deficiency in pregnancy and increased autism traits.

Neuromotor problems at the core of autism, study says

December 12, 2016

Rutgers neuroscientists have established that problems controlling bodily movements are at the core of autism spectrum disorders and that the use of psychotropic medications to treat autism in children often makes such neuromotor ...

Mutations in life's 'essential genes' tied to autism

December 12, 2016

Genes known to be essential to life—the ones humans need to survive and thrive in the womb—also play a critical role in the development of autism spectrum disorder (ASD), suggests a new study from Penn Medicine geneticists ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.