Researchers have identified a gene with a key role in neuronal survival

April 16, 2012, Universitat Autonoma de Barcelona

Spanish researchers at the Institute of Neurosciences at Universitat Autonoma de Barcelona (INc-UAB) identified the fundamental role played by the Nurr1 gene in neuron survival associated with synaptic activity. The discovery, published in the Journal of Biological Chemistry, allows scientists to study a new target that could help to understand the relationship between alterations in neural connections, which are known to cause early cognitive deficit, and the neurodegeneration characteristic of Alzheimer's disease.

During the development of the brain, hundreds of thousands of neurons die if they do not establish the necessary connections - synapses - with their cell targets. The process of regulating neuron survival and death is fundamental in the organization of forming the adult brain.

The effect of synaptic activity on the survival of these neurons however is not limited to the developing brain; it is also fundamental in the . The loss of synaptic activity, which results into the characteristic cognitive impairment seen in such as Alzheimer's, precedes and contributes to the neuronal death observed in these pathologies. Despite the importance of this process, there is no exact knowledge of the molecular mechanisms implied in neuron survival generated by this activity.

In the study directed by José Rodríguez Álvarez, researcher of the UAB Institute of Neurosciences, scientists determined the relation of a gene and the neuron survival regulated by synaptic activity. Through a massive analysis of gene activity, researchers identified several dozens of genes whose functions are regulated by this activity. Of all the genes, the research demonstrates the key role played by the Nurr1 gene in the survival of neurons. Among the discoveries made, researchers observed that when the activity of this gene is silenced, the neuron dies. The research concludes that this identification provides a better understanding into the relationship between early synaptic deficits and the posterior neurodegeneration observed in Alzheimer's disease.

Explore further: A mechanism to improve learning and memory

Related Stories

A mechanism to improve learning and memory

February 21, 2012
There are a number of drugs and experimental conditions that can block cognitive function and impair learning and memory. However, scientists have recently shown that some drugs can actually improve cognitive function, which ...

Study provides potential explanation for mechanisms of associative memory

December 13, 2011
Researchers from the University of Bristol have discovered that a chemical compound in the brain can weaken the synaptic connections between neurons in a region of the brain important for the formation of long-term memories. ...

Brain's connective cells are much more than glue; they also regulate learning and memory

December 29, 2011
Glia cells, named for the Greek word for "glue," hold the brain's neurons together and protect the cells that determine our thoughts and behaviors, but scientists have long puzzled over their prominence in the activities ...

Recommended for you

When the eyes move, the eardrums move, too

January 23, 2018
Simply moving the eyes triggers the eardrums to move too, says a new study by Duke University neuroscientists.

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.